Mercurial > hg > Members > kono > Proof > automaton
changeset 411:207e6c4e155c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Nov 2023 17:40:55 +0900 |
parents | db02b6938e04 |
children | b85402051cdb |
files | automaton-in-agda/src/nfa.agda automaton-in-agda/src/regex.agda automaton-in-agda/src/regex1-ex.agda automaton-in-agda/src/regular-language.agda automaton-in-agda/src/sbconst2.agda |
diffstat | 5 files changed, 123 insertions(+), 82 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/nfa.agda Wed Nov 22 17:07:01 2023 +0900 +++ b/automaton-in-agda/src/nfa.agda Wed Nov 29 17:40:55 2023 +0900 @@ -41,25 +41,6 @@ -- given list of all states, extract list of q which qs q is true -to-list : {Q : Set} → List Q → ( Q → Bool ) → List Q -to-list {Q} x exists = to-list1 x [] where - to-list1 : List Q → List Q → List Q - to-list1 [] x = x - to-list1 (q ∷ qs) x with exists q - ... | true = to-list1 qs (q ∷ x ) - ... | false = to-list1 qs x - -Nmoves : { Q : Set } { Σ : Set } - → NAutomaton Q Σ - → (exists : ( Q → Bool ) → Bool) - → ( Qs : Q → Bool ) → (s : Σ ) → ( Q → Bool ) -Nmoves {Q} { Σ} M exists Qs s = λ q → exists ( λ qn → (Qs qn /\ ( Nδ M qn s q ) )) - --- --- Q is finiteSet --- so we have --- exists : ( P : Q → Bool ) → Bool --- which checks if there is a q in Q such that P q is true Naccept : { Q : Set } { Σ : Set } → NAutomaton Q Σ @@ -85,6 +66,25 @@ -- ... | true = ndepth qs sb (i ∷ is) t (ndepth1 q i all is t t1 ) -- ... | false = ndepth qs sb (i ∷ is) t t1 +to-list : {Q : Set} → List Q → ( Q → Bool ) → List Q +to-list {Q} x exists = to-list1 x [] where + to-list1 : List Q → List Q → List Q + to-list1 [] x = x + to-list1 (q ∷ qs) x with exists q + ... | true = to-list1 qs (q ∷ x ) + ... | false = to-list1 qs x + +Nmoves : { Q : Set } { Σ : Set } + → NAutomaton Q Σ + → (exists : ( Q → Bool ) → Bool) + → ( Qs : Q → Bool ) → (s : Σ ) → ( Q → Bool ) +Nmoves {Q} { Σ} M exists Qs s = λ q → exists ( λ qn → (Qs qn /\ ( Nδ M qn s q ) )) + +-- +-- Q is finiteSet +-- so we have +-- exists : ( P : Q → Bool ) → Bool +-- which checks if there is a q in Q such that P q is true -- trace in state set -- Ntrace : { Q : Set } { Σ : Set } @@ -179,7 +179,7 @@ test1 : Bool test1 = existsS1 fin1 -test2 = Nmoves am2 existsS1 start1 +-- test2 = Nmoves am2 existsS1 start1 open import automaton
--- a/automaton-in-agda/src/regex.agda Wed Nov 22 17:07:01 2023 +0900 +++ b/automaton-in-agda/src/regex.agda Wed Nov 29 17:40:55 2023 +0900 @@ -14,13 +14,17 @@ open import logic open import regular-language +-- (abc|d.*) +-- any = < a > || < b > || < c > || < d > +-- ( < a > & < b > & < c > ) || ( <d > & ( any * ) ) + data Regex ( Σ : Set) : Set where ε : Regex Σ -- empty - φ : Regex Σ -- fail - _* : Regex Σ → Regex Σ - _&_ : Regex Σ → Regex Σ → Regex Σ - _||_ : Regex Σ → Regex Σ → Regex Σ - <_> : Σ → Regex Σ + φ : Regex Σ -- fail + _* : Regex Σ → Regex Σ + _&_ : Regex Σ → Regex Σ → Regex Σ + _||_ : Regex Σ → Regex Σ → Regex Σ + <_> : Σ → Regex Σ infixr 40 _&_ _||_ @@ -30,9 +34,9 @@ regex-language φ cmp _ = false regex-language ε cmp [] = true regex-language ε cmp (_ ∷ _) = false -regex-language (x *) cmp = repeat ( regex-language x cmp ) -regex-language (x & y) cmp = split ( λ z → regex-language x cmp z ) (λ z → regex-language y cmp z ) -regex-language (x || y) cmp = λ s → ( regex-language x cmp s ) \/ ( regex-language y cmp s) +regex-language (x *) cmp = repeat ( regex-language x cmp ) [] +regex-language (x & y) cmp = split ( λ z → regex-language x cmp z ) (regex-language y cmp ) +regex-language (x || y) cmp = λ s → ( regex-language x cmp s ) \/ ( regex-language y cmp s) regex-language < h > cmp [] = false regex-language < h > cmp (h1 ∷ [] ) with cmp h h1 ... | yes _ = true
--- a/automaton-in-agda/src/regex1-ex.agda Wed Nov 22 17:07:01 2023 +0900 +++ b/automaton-in-agda/src/regex1-ex.agda Wed Nov 29 17:40:55 2023 +0900 @@ -35,20 +35,24 @@ open import nfa -tt1 : {Σ : Set} → ( P Q : List In → Bool ) → split P Q ( a ∷ b ∷ c ∷ [] ) ≡ ? -tt1 P Q = ? +tt1 : {Σ : Set} → ( P Q : List In → Bool ) → split P Q ( a ∷ b ∷ c ∷ [] ) ≡ + P [] /\ Q (a ∷ b ∷ c ∷ []) \/ + P (a ∷ []) /\ Q (b ∷ c ∷ []) \/ + P (a ∷ b ∷ []) /\ Q (c ∷ []) \/ P (a ∷ b ∷ c ∷ []) /\ Q [] +tt1 P Q = refl +test-AB→repeat3 : {Σ : Set} → {A : List In → Bool} → repeat A [] ( a ∷ [] ) ≡ A (a ∷ [] ) +test-AB→repeat3 {_} {A} = refl -test-AB→repeat1 : {Σ : Set} → {A : List In → Bool} → repeat A ( a ∷ b ∷ c ∷ [] ) ≡ - A (a ∷ []) /\ ( - (A (b ∷ []) /\ (A (c ∷ []) /\ true \/ false) ) - \/ (A (b ∷ c ∷ []) /\ true \/ false)) - \/ A (a ∷ b ∷ []) /\ (A (c ∷ []) /\ true \/ false) - \/ A (a ∷ b ∷ c ∷ []) /\ true \/ false +test-AB→repeat2 : {Σ : Set} → {A : List In → Bool} → repeat A [] ( a ∷ b ∷ [] ) ≡ A (a ∷ []) /\ A (b ∷ []) \/ A (a ∷ b ∷ []) +test-AB→repeat2 {_} {A} = refl + +test-AB→repeat1 : {Σ : Set} → {A : List In → Bool} → repeat A [] ( a ∷ b ∷ c ∷ [] ) ≡ + A (a ∷ []) /\ ((A (b ∷ []) /\ A (c ∷ [])) \/ A (b ∷ c ∷ [])) + \/ A (a ∷ b ∷ []) /\ A (c ∷ []) -- ok + \/ A (a ∷ b ∷ c ∷ []) -- ok test-AB→repeat1 {_} {A} = refl - - cmpi : (x y : In ) → Dec (x ≡ y) cmpi a a = yes refl cmpi b b = yes refl @@ -67,7 +71,7 @@ cmpi d b = no (λ ()) cmpi d c = no (λ ()) -test-regex : regex-language r1' cmpi ( a ∷ [] ) ≡ false +test-regex : regex-language r1' cmpi ( a ∷ b ∷ c ∷ [] ) ≡ true test-regex = refl -- test-regex2 : regex-language r2 cmpi ( b ∷ c ∷ a ∷ b ∷ [] ) ≡ false
--- a/automaton-in-agda/src/regular-language.agda Wed Nov 22 17:07:01 2023 +0900 +++ b/automaton-in-agda/src/regular-language.agda Wed Nov 29 17:40:55 2023 +0900 @@ -3,11 +3,11 @@ module regular-language where open import Level renaming ( suc to Suc ; zero to Zero ) -open import Data.List +open import Data.List open import Data.Nat hiding ( _≟_ ) open import Data.Fin hiding ( _+_ ) -open import Data.Empty -open import Data.Unit +open import Data.Empty +open import Data.Unit open import Data.Product -- open import Data.Maybe open import Relation.Nullary @@ -40,18 +40,28 @@ -- Terminating version of Star1 -- -repeat : {Σ : Set} → (x : List Σ → Bool) → (y : List Σ ) → Bool -repeat2 : {Σ : Set} → (x : List Σ → Bool) → (pre y : List Σ ) → Bool -repeat2 x pre [] = true -repeat2 x pre (h ∷ y) = - (x (pre ++ (h ∷ [])) /\ repeat x y ) - \/ repeat2 x (pre ++ (h ∷ [])) y -repeat {Σ} x [] = true -repeat {Σ} x (h ∷ y) = repeat2 x [] (h ∷ y) +-- regular-langue (P *) ( a ∷ b ∷ c ∷ [] ) = +-- (P []) \/ +-- (P (a ∷ []) /\ repeat P (b ∷ c ∷ []) ) \/ +-- (P (a ∷ b ∷ []) /\ repeat P (c ∷ []) ) \/ +-- (P (a ∷ b ∷ c ∷ []) +-- +-- repeat : {Σ : Set} → (x : language {Σ} ) → language {Σ} +-- repeat x [] = true +-- repeat x (h ∷ t) = (x [] /\ ? (h ∷ t)) \/ +-- repeat (λ t1 → x ( h ∷ t1 )) t -Star : {Σ : Set} → (x : List Σ → Bool) → (y : List Σ ) → Bool -Star {Σ} x y = repeat x y +repeat : {Σ : Set} → (P : List Σ → Bool) → (pre y : List Σ ) → Bool +repeat P [] [] = true +repeat P (h ∷ t) [] = P (h ∷ t) +repeat P pre (h ∷ []) = P (pre ++ (h ∷ [])) +repeat P pre (h ∷ y@(_ ∷ _)) = + ((P (pre ++ (h ∷ []))) /\ repeat P [] y ) + \/ repeat P (pre ++ (h ∷ [])) y + +Star : {Σ : Set} → (x : List Σ → Bool) → (y : List Σ ) → Bool +Star {Σ} x y = repeat x [] y -- We have to prove definitions of Concat and Star are equivalent to the set theoretic definitions @@ -62,17 +72,17 @@ -- lemma-Union : {Σ : Set} → ( A B : language {Σ} ) → ( x : List Σ ) → Union A B x ≡ ( A x \/ B x ) -- lemma-Union = ? --- lemma-Concat : {Σ : Set} → ( A B : language {Σ} ) → ( x : List Σ ) +-- lemma-Concat : {Σ : Set} → ( A B : language {Σ} ) → ( x : List Σ ) -- → Concat A B x ≡ ( ∃ λ y → ∃ λ z → A y /\ B z /\ x ≡ y ++ z ) -- lemma-Concat = ? open import automaton-ex test-AB→split : {Σ : Set} → {A B : List In2 → Bool} → split A B ( i0 ∷ i1 ∷ i0 ∷ [] ) ≡ ( - ( A [] /\ B ( i0 ∷ i1 ∷ i0 ∷ [] ) ) \/ - ( A ( i0 ∷ [] ) /\ B ( i1 ∷ i0 ∷ [] ) ) \/ + ( A [] /\ B ( i0 ∷ i1 ∷ i0 ∷ [] ) ) \/ + ( A ( i0 ∷ [] ) /\ B ( i1 ∷ i0 ∷ [] ) ) \/ ( A ( i0 ∷ i1 ∷ [] ) /\ B ( i0 ∷ [] ) ) \/ - ( A ( i0 ∷ i1 ∷ i0 ∷ [] ) /\ B [] ) + ( A ( i0 ∷ i1 ∷ i0 ∷ [] ) /\ B [] ) ) test-AB→split {_} {A} {B} = refl @@ -97,8 +107,8 @@ isRegular : {Σ : Set} → (A : language {Σ} ) → ( x : List Σ ) → (r : RegularLanguage Σ ) → Set isRegular A x r = A x ≡ contain r x -RegularLanguage-is-language : { Σ : Set } → RegularLanguage Σ → language {Σ} -RegularLanguage-is-language {Σ} R = RegularLanguage.contain R +RegularLanguage-is-language : { Σ : Set } → RegularLanguage Σ → language {Σ} +RegularLanguage-is-language {Σ} R = RegularLanguage.contain R RegularLanguage-is-language' : { Σ : Set } → RegularLanguage Σ → List Σ → Bool RegularLanguage-is-language' {Σ} R x = accept (automaton R) (astart R) x where @@ -106,7 +116,7 @@ -- a language is implemented by an automaton --- postulate +-- postulate -- fin-× : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A × B) {a * b} M-Union : {Σ : Set} → (A B : RegularLanguage Σ ) → RegularLanguage Σ @@ -118,7 +128,7 @@ δ = λ q x → ( δ (automaton A) (proj₁ q) x , δ (automaton B) (proj₂ q) x ) ; aend = λ q → ( aend (automaton A) (proj₁ q) \/ aend (automaton B) (proj₂ q) ) } - } + } closed-in-union : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Union (contain A) (contain B)) x ( M-Union A B ) closed-in-union A B [] = lemma where @@ -126,14 +136,14 @@ aend (automaton A) (astart A) \/ aend (automaton B) (astart B) lemma = refl closed-in-union {Σ} A B ( h ∷ t ) = lemma1 t ((δ (automaton A) (astart A) h)) ((δ (automaton B) (astart B) h)) where - lemma1 : (t : List Σ) → (qa : states A ) → (qb : states B ) → + lemma1 : (t : List Σ) → (qa : states A ) → (qb : states B ) → accept (automaton A) qa t \/ accept (automaton B) qb t ≡ accept (automaton (M-Union A B)) (qa , qb) t lemma1 [] qa qb = refl lemma1 (h ∷ t ) qa qb = lemma1 t ((δ (automaton A) qa h)) ((δ (automaton B) qb h)) - + record Split {Σ : Set} (A : List Σ → Bool ) ( B : List Σ → Bool ) (x : List Σ ) : Set where field sp0 sp1 : List Σ @@ -161,7 +171,7 @@ c-split-lemma {Σ} A B h t eq p = sym ( begin true ≡⟨ sym eq ⟩ - split A B (h ∷ t ) + split A B (h ∷ t ) ≡⟨⟩ A [] /\ B (h ∷ t) \/ split (λ t1 → A (h ∷ t1)) B t ≡⟨ cong ( λ k → k \/ split (λ t1 → A (h ∷ t1)) B t ) (lemma-p p ) ⟩ @@ -169,14 +179,14 @@ ≡⟨ bool-or-1 refl ⟩ split (λ t1 → A (h ∷ t1)) B t ∎ ) where - open ≡-Reasoning + open ≡-Reasoning lemma-p : ( ¬ (A [] ≡ true )) ∨ ( ¬ (B ( h ∷ t ) ≡ true) ) → A [] /\ B (h ∷ t) ≡ false lemma-p (case1 ¬A ) = bool-and-1 ( ¬-bool-t ¬A ) lemma-p (case2 ¬B ) = bool-and-2 ( ¬-bool-t ¬B ) split→AB : {Σ : Set} → (A B : List Σ → Bool ) → ( x : List Σ ) → split A B x ≡ true → Split A B x -split→AB {Σ} A B [] eq with bool-≡-? (A []) true | bool-≡-? (B []) true -split→AB {Σ} A B [] eq | yes eqa | yes eqb = +split→AB {Σ} A B [] eq with bool-≡-? (A []) true | bool-≡-? (B []) true +split→AB {Σ} A B [] eq | yes eqa | yes eqb = record { sp0 = [] ; sp1 = [] ; sp-concat = refl ; prop0 = eqa ; prop1 = eqb } split→AB {Σ} A B [] eq | yes p | no ¬p = ⊥-elim (lemma-∧-1 eq (¬-bool-t ¬p )) split→AB {Σ} A B [] eq | no ¬p | t = ⊥-elim (lemma-∧-0 eq (¬-bool-t ¬p )) @@ -207,15 +217,15 @@ true ∎ where open ≡-Reasoning -split→AB1 : {Σ : Set} → (A B : List Σ → Bool ) → ( x : List Σ ) → Split A B x → split A B x ≡ true +split→AB1 : {Σ : Set} → (A B : List Σ → Bool ) → ( x : List Σ ) → Split A B x → split A B x ≡ true split→AB1 {Σ} A B x S = subst (λ k → split A B k ≡ true ) (sp-concat S) ( AB→split A B _ _ (prop0 S) (prop1 S) ) - + -- low of exclude middle of Split A B x lemma-concat : {Σ : Set} → ( A B : language {Σ} ) → (x : List Σ) → Split A B x ∨ ( ¬ Split A B x ) lemma-concat {Σ} A B x with split A B x in eq ... | true = case1 (split→AB A B x eq ) -... | false = case2 (λ p → ¬-bool eq (split→AB1 A B x p )) +... | false = case2 (λ p → ¬-bool eq (split→AB1 A B x p )) -- Concat : {Σ : Set} → ( A B : language {Σ} ) → language {Σ} -- Concat {Σ} A B = split A B @@ -231,17 +241,39 @@ open StarProp -Star→StarProp : {Σ : Set} → ( A : language {Σ} ) → (x : List Σ) → Star A x ≡ true → StarProp A x -Star→StarProp = ? +open import Data.List.Properties -StarProp→Star : {Σ : Set} → ( A : language {Σ} ) → (x : List Σ) → StarProp A x → Star A x ≡ true -StarProp→Star {Σ} A x sp = subst (λ k → Star A k ≡ true ) (spsx (spn sp) refl) ( sps1 (spn sp) refl ) where - spsx : (y : List ( List Σ ) ) → spn sp ≡ y → foldr (λ k → k ++_ ) [] y ≡ x - spsx y refl = spn-concat sp - sps1 : (y : List ( List Σ ) ) → spn sp ≡ y → Star A (foldr (λ k → k ++_ ) [] y) ≡ true - sps1 = ? +Star→StarProp : {Σ : Set} → ( A : language {Σ} ) → (x : List Σ) → Star A x ≡ true → StarProp A x +Star→StarProp {Σ} A x ax = ss00 [] x ax where + ss00 : (pre x : List Σ) → repeat A pre x ≡ true → StarProp A (pre ++ x ) + ss00 [] [] eq = record { spn = [] ; spn-concat = refl ; propn = eq } + ss00 (h ∷ t) [] eq = record { spn = (h ∷ t) ∷ [] ; spn-concat = refl ; propn = bool-and-tt eq refl } + ss00 pre (h ∷ []) eq = record { spn = (pre ++ (h ∷ [])) ∷ [] ; spn-concat = ++-assoc pre _ _ + ; propn = bool-and-tt (trans (sym (ss01 pre (h ∷ []) refl )) eq) refl } where + ss01 : (pre x : List Σ) → x ≡ h ∷ [] → repeat A pre x ≡ A (pre ++ (h ∷ [])) + ss01 [] (h ∷ []) refl = refl + ss01 (x ∷ pre) (h ∷ []) refl = refl + ss00 pre (h ∷ y@(i ∷ t)) eq = ? where + ss01 : (pre x : List Σ) → x ≡ y → ( ((A (pre ++ (h ∷ []))) /\ repeat A [] y ) \/ repeat A (pre ++ (h ∷ [])) y ) ≡ repeat A pre (h ∷ y ) + ss01 = ? + ss02 : StarProp A (pre ++ h ∷ y ) + ss02 with (A (pre ++ (h ∷ []))) /\ repeat A [] y in eq1 + ... | true = ? + ... | false = ? where + ss03 : repeat A (pre ++ (h ∷ [])) y ≡ true + ss03 = ? - -lemma-starprop : {Σ : Set} → ( A : language {Σ} ) → (x : List Σ) → StarProp A x ∨ ( ¬ StarProp A x ) -lemma-starprop = ? - +-- +-- StarProp→Star : {Σ : Set} → ( A : language {Σ} ) → (x : List Σ) → StarProp A x → Star A x ≡ true +-- StarProp→Star {Σ} A x sp = subst (λ k → Star A k ≡ true ) (spsx (spn sp) refl) ( sps1 (spn sp) refl ) where +-- spsx : (y : List ( List Σ ) ) → spn sp ≡ y → foldr (λ k → k ++_ ) [] y ≡ x +-- spsx y refl = spn-concat sp +-- sps1 : (y : List ( List Σ ) ) → spn sp ≡ y → Star A (foldr (λ k → k ++_ ) [] y) ≡ true +-- sps1 [] sp=y = refl +-- sps1 ([] ∷ t) sp=y = ? +-- sps1 ((x ∷ h) ∷ t) sp=y = ? +-- +-- +-- lemma-starprop : {Σ : Set} → ( A : language {Σ} ) → (x : List Σ) → StarProp A x ∨ ( ¬ StarProp A x ) +-- lemma-starprop = ? +--
--- a/automaton-in-agda/src/sbconst2.agda Wed Nov 22 17:07:01 2023 +0900 +++ b/automaton-in-agda/src/sbconst2.agda Wed Nov 29 17:40:55 2023 +0900 @@ -20,7 +20,8 @@ --- ( Q → Σ → Q → Bool ) transition of NFA --- (Q → Bool) → Σ → (Q → Bool) generate transition of Automaton -δconv : { Q : Set } { Σ : Set } → ( ( Q → Bool ) → Bool ) → ( Q → Σ → Q → Bool ) → (Q → Bool) → Σ → (Q → Bool) +δconv : { Q : Set } { Σ : Set } → (exists :( Q → Bool ) → Bool ) → (nδ : Q → Σ → Q → Bool ) + → (Q → Bool) → Σ → (Q → Bool) δconv {Q} { Σ} exists nδ f i q = exists ( λ r → f r /\ nδ r i q ) subset-construction : { Q : Set } { Σ : Set } →