Mercurial > hg > Members > kono > Proof > automaton
changeset 315:25ae77240238
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Jan 2022 00:55:06 +0900 |
parents | a69308ed107a |
children | fd07e3205cea |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 9 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Mon Jan 03 00:30:01 2022 +0900 +++ b/automaton-in-agda/src/non-regular.agda Mon Jan 03 00:55:06 2022 +0900 @@ -138,11 +138,11 @@ trace-xyyz : Trace fa (x ++ y ++ y ++ z) q non-nil-y : ¬ (y ≡ []) -make-TA : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (fins : FiniteSet Σ) (finq : FiniteSet Q) (q qd : Q) (is : List Σ) +make-TA : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) (q qd : Q) (is : List Σ) → (tr : Trace fa is q ) → dup-in-list finq qd (tr→qs fa is q tr) ≡ true → TA fa q is -make-TA {Q} {Σ} fa fins finq q qd is tr dup = tra-phase1 q is tr dup where +make-TA {Q} {Σ} fa finq q qd is tr dup = tra-phase1 q is tr dup where open TA tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa finq q qd is @@ -160,8 +160,7 @@ tra-08 = qd-next (TA1.y ta) q (TA1.trace-yz (tra-phase2 (δ fa q i) is tr p)) ne (TA1.q=qd ta) tra-phase1 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase1 finq qd (tr→qs fa is q tr) ≡ true → TA fa q is tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q - | phase1 finq qd (tr→qs fa is (δ fa q i) tr) | inspect ( phase1 finq qd) (tr→qs fa is (δ fa q i) tr) - ... | true | record { eq = eq } | false | record { eq = np} = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) + ... | true | record { eq = eq } = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) ; non-nil-y = λ () ; trace-xyz = tnext q (TA1.trace-yz ta) ; trace-xyyz = tnext q tra-05 } where @@ -174,23 +173,18 @@ tryz : Trace fa (i ∷ y1 ++ z1) qd tryz = tnext qd tryz0 tra-04 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) - → QDSEQ finq qd z1 {q} {y2} tr -- should be y ++ z1 + → QDSEQ finq qd z1 {q} {y2} tr → Trace fa (y2 ++ (i ∷ y1) ++ z1) q tra-04 [] q tr (qd-nil q _ x₁) with equal? finq qd q | inspect (equal? finq qd) q ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ y1 ++ z1) k) (equal→refl finq eq) tryz ... | false | record { eq = ne } = ⊥-elim ( ¬-bool refl x₁ ) tra-04 (y0 ∷ y2) q (tnext q tr) (qd-next _ _ _ x₁ qdseq) with equal? finq qd q | inspect (equal? finq qd) q - ... | true | record { eq = eq } = ⊥-elim ( ¬-bool x₁ refl ) -- y2 + z1 contains two qd + ... | true | record { eq = eq } = ⊥-elim ( ¬-bool x₁ refl ) ... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr qdseq ) tra-05 : Trace fa (TA1.y ta ++ (i ∷ TA1.y ta) ++ TA1.z ta) (δ fa q i) tra-05 with equal→refl finq eq ... | refl = tra-04 y1 (δ fa qd i) (TA1.trace-yz ta) (TA1.q=qd ta) - ... | true | record { eq = eq } | true | record { eq = np} = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) - ; non-nil-y = non-nil-y ta - ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where - ta : TA fa (δ fa q i ) is - ta = tra-phase1 (δ fa q i ) is tr np - ... | false | _ | _ | _ = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) + ... | false | _ = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) ; non-nil-y = non-nil-y ta ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is @@ -216,7 +210,7 @@ nn09 (suc n) m = s≤s (nn09 n m) nn04 : Trace (automaton r) nn (astart r) nn04 = tr-accept← (automaton r) nn (astart r) nn03 - nntrace = trace (automaton r) (astart r) nn + nntrace = tr→qs (automaton r) nn (astart r) nn04 nn07 : (n : ℕ) → length (inputnn0 n i0 i1 []) ≡ n + n nn07 n = subst (λ k → length (inputnn0 n i0 i1 []) ≡ k) (+-comm (n + n) _ ) (nn08 n [] )where nn08 : (n : ℕ) → (s : List In2) → length (inputnn0 n i0 i1 s) ≡ n + n + length s @@ -236,10 +230,10 @@ length (inputnn0 n i0 i1 []) ≤⟨ refl-≤s ⟩ {!!} ≤⟨ {!!} ⟩ length nntrace ∎ where open ≤-Reasoning - nn06 : Dup-in-list ( afin r) nntrace + nn06 : Dup-in-list ( afin r) (tr→qs (automaton r) nn (astart r) nn04) nn06 = dup-in-list>n (afin r) nntrace nn05 TAnn : TA (automaton r) (astart r) nn - TAnn = make-TA (automaton r) {!!} (afin r) (astart r) {!!} nn {!!} {!!} + TAnn = make-TA (automaton r) (afin r) (astart r) (Dup-in-list.dup nn06) nn nn04 (Dup-in-list.is-dup nn06) count : In2 → List In2 → ℕ count _ [] = 0 count i0 (i0 ∷ s) = suc (count i0 s)