Mercurial > hg > Members > kono > Proof > automaton
changeset 308:2effd9a23299
tra-04
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jan 2022 06:52:35 +0900 |
parents | aeb805cd624a |
children | acb0214ea4d8 |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 18 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Sun Jan 02 06:04:32 2022 +0900 +++ b/automaton-in-agda/src/non-regular.agda Sun Jan 02 06:52:35 2022 +0900 @@ -151,26 +151,27 @@ ... | true | record { eq = eq } | false | record { eq = np} = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) ; non-nil-y = λ () ; trace-xyz = tnext q (TA1.trace-yz ta) - ; trace-xyyz = {!!} } where + ; trace-xyyz = tra-04 (i ∷ TA1.y ta) q (tnext q (subst (λ k → Trace fa (y1 ++ z1) (δ fa k i) ) (equal→refl finq eq) tryz0)) } where ta : TA1 fa finq (δ fa q i ) qd is ta = tra-phase2 (δ fa q i ) is tr p - tra-02 : (y1 z1 : List Σ) → (qd : Q) → (tr : Trace fa (y1 ++ z1) qd) → (trz : Trace fa z1 qd) - → phase2 finq qd (tr→qs fa (y1 ++ z1) qd tr) ≡ true - → phase1 finq qd (tr→qs fa (y1 ++ z1) qd tr) ≡ false - → Trace fa (y1 ++ y1 ++ z1) qd - tra-02 [] z1 qd tryz trz p1 np1 = trz - tra-02 (i ∷ y1) z1 qd (tnext q tr) trz p1 np1 = {!!} where - tryz = tnext q tr - tra-05 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) → equal? finq qd q ≡ is0-bool (length y2) - tra-05 = {!!} - tra-04 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) + y1 = TA1.y ta + z1 = TA1.z ta + tryz0 : Trace fa (y1 ++ z1) (δ fa qd i) + tryz0 = subst₂ (λ j k → Trace fa k (δ fa j i) ) (sym (equal→refl finq eq)) (sym (TA1.yz=is ta)) tr + tryz : Trace fa (i ∷ y1 ++ z1) qd + tryz = tnext qd tryz0 + tra-06 : equal? finq qd (δ fa q i) ≡ is0-bool (length y1) + tra-06 = TA1.q=qd ta + tra-05 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) → equal? finq qd q ≡ is0-bool (length y2) + tra-05 y2 q tr = {!!} + tra-04 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) → Trace fa (y2 ++ (i ∷ y1) ++ z1) q - tra-04 [] q tr with equal? finq qd q | inspect (equal? finq qd) q - ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ y1 ++ z1) k) (equal→refl finq eq) tryz - ... | false | record { eq = ne } = ⊥-elim ( ¬-bool {!!} {!!} ) - tra-04 (y0 ∷ y2) q (tnext q tr) with equal? finq qd q | inspect (equal? finq qd) q - ... | true | record { eq = eq } = ⊥-elim ( ¬-bool {!!} {!!} ) -- y2 + z1 contains two qd - ... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr ) + tra-04 [] q tr with equal? finq qd q | inspect (equal? finq qd) q + ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ y1 ++ z1) k) (equal→refl finq eq) tryz + ... | false | record { eq = ne } = ⊥-elim ( ¬-bool ne (tra-05 [] q tr) ) + tra-04 (y0 ∷ y2) q (tnext q tr) with equal? finq qd q | inspect (equal? finq qd) q + ... | true | record { eq = eq } = ⊥-elim ( ¬-bool (tra-05 (y0 ∷ y2) q (tnext q tr)) eq ) where -- y2 + z1 contains two qd + ... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr ) ... | true | record { eq = eq } | true | record { eq = np} = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) ; non-nil-y = non-nil-y ta ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where