Mercurial > hg > Members > kono > Proof > automaton
changeset 408:3d0aa205edf9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Nov 2023 16:24:07 +0900 |
parents | c7ad8d2dc157 |
children | 4e4acdc43dee |
files | a04/lecture.ind automaton-in-agda/src/flcagl.agda automaton-in-agda/src/halt.agda automaton-in-agda/src/nfa136.agda automaton-in-agda/src/regular-language.agda |
diffstat | 5 files changed, 144 insertions(+), 51 deletions(-) [+] |
line wrap: on
line diff
--- a/a04/lecture.ind Thu Nov 09 18:04:55 2023 +0900 +++ b/a04/lecture.ind Wed Nov 15 16:24:07 2023 +0900 @@ -25,6 +25,14 @@ abcfbffbcdf は、この正規表現にマッチする。a.*fb.*f と書いても良い。 +Perl で書けば + + perl -de 0 + DB<14> if ($x =~ /^(a.*f)(b.*f)$/) { print "$1 $2\n"; } + + perl -e 'if ($x =~ /^(a.*f)(b.*f)$/) { print "$1 $2\n"; }' + + a.*f は以下の状態遷移で書ける。 State は a0,a1,ae,af で、ae ならば受理。 @@ -42,6 +50,7 @@ δb b0 _ = bf これを使って、a.*fb.*f を受理してみる。 +<a href="../automaton-in-agda/src/nfa136.agda"> nfa136.agda </a> <center><img src="fig/af-concat.svg"></center>
--- a/automaton-in-agda/src/flcagl.agda Thu Nov 09 18:04:55 2023 +0900 +++ b/automaton-in-agda/src/flcagl.agda Wed Nov 15 16:24:07 2023 +0900 @@ -8,6 +8,11 @@ -- bb : (y : aaa) → aaa -- cc : (y : aaa) → aaa -- +-- Lang : {Σ : Set } → List Σ → Bool +-- Lang [] = ? +-- Lang (h ∷ t) = ? +-- +-- -- (x : aaa) → bb → cc → aend -- induction : ( P : aaa → Set ) → (x : aaa) → P x -- induction P aend = ? @@ -64,6 +69,8 @@ open List + -- Lnag ≅ Bool × (Σ → Lang) + -- record Lang (i : Size) : Set where coinductive field @@ -118,9 +125,11 @@ _+_ : ∀{i} (k l : Lang i) → Lang i ν (k + l) = ν k ∧ ν l - δ (k + l) x with ν k - ... | false = δ k x + l - ... | true = (δ k x + l ) ∪ δ l x + δ (k + l) x with ν k | ν l + ... | false | true = δ k x + l + ... | false | false = δ k x + l + ... | true | true = (δ k x + l ) ∪ δ l x + ... | true | false = (δ k x + l ) ∪ δ l x language : { Σ : Set } → Set language {Σ} = List ∞ Σ → Bool @@ -130,12 +139,12 @@ split x y (h ∷ t) = (x [] ∧ y (h ∷ t)) ∨ split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t - LtoSplit : (x y : Lang ∞ ) → (z : List ∞ A) → ((x + y ) ∋ z) ≡ true → split (λ w → x ∋ w) (λ w → y ∋ w) z ≡ true + LtoSplit : (x y : Lang ∞ ) → (z : List ∞ A) → ((x + y ) ∋ z) ≡ true → split (λ w → x ∋ w) (λ w → y ∋ w) z ≡ true LtoSplit x y [] xy with ν x | ν y ... | true | true = refl LtoSplit x y (h ∷ z) xy = ? - SplitoL : (x y : Lang ∞ ) → (z : List ∞ A) → ((x + y ) ∋ z) ≡ false → split (λ w → x ∋ w) (λ w → y ∋ w) z ≡ false + SplitoL : (x y : Lang ∞ ) → (z : List ∞ A) → ((x + y ) ∋ z) ≡ false → split (λ w → x ∋ w) (λ w → y ∋ w) z ≡ false SplitoL x y [] xy with ν x | ν y ... | false | false = refl ... | false | true = ? @@ -217,8 +226,7 @@ ≅δ (union-cong p q) a = union-cong (≅δ p a) (≅δ q a) withExample : (P : Bool → Set) (p : P true) (q : P false) → - {A : Set} (g : A → Bool) (x : A) → P (g x) - withExample P p q g x with g x + {A : Set} (g : A → Bool) (x : A) → P (g x) withExample P p q g x with g x ... | true = p ... | false = q
--- a/automaton-in-agda/src/halt.agda Thu Nov 09 18:04:55 2023 +0900 +++ b/automaton-in-agda/src/halt.agda Wed Nov 15 16:24:07 2023 +0900 @@ -16,6 +16,9 @@ open import logic +-- +-- (R → Bool) <-> S +-- record FBijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where field ffun← : S → R → Bool @@ -26,6 +29,17 @@ open FBijection +-- S <-> S → Bool +-- +-- S 0 1 2 3 .... +-- 0 t f t f .... +-- 1 t f t f .... +-- 2 t f t f .... +-- 3 t t t t ..... +-- .. +-- counter exmpple +-- f t f f ... + fdiag : {S : Set } (b : FBijection S S) → S → Bool fdiag b n = not (ffun← b n n) @@ -35,6 +49,8 @@ -- is pointwise equal to fdiag b , which means not (ffun← b (ffun→ b (fdiag b) ) x ≡ (fdiag b) x ) -- but is also means not (fdiag b) x ≡ (fdiag b) x , contradiction +-- ¬ (S → Bool) <-> S +-- fdiagonal : { S : Set } → ¬ FBijection S S fdiagonal {S} b = ¬t=f _ (trans ff4 (sym (ff3 _) ) ) where ff1 : S
--- a/automaton-in-agda/src/nfa136.agda Thu Nov 09 18:04:55 2023 +0900 +++ b/automaton-in-agda/src/nfa136.agda Wed Nov 15 16:24:07 2023 +0900 @@ -45,7 +45,7 @@ t146-1 = Ntrace nfa136 states136 exists136 start136( a0 ∷ b0 ∷ a0 ∷ a0 ∷ [] ) -test111 = ? +-- test111 = ? example136-0 = Naccept nfa136 exists136 start136( a0 ∷ [] ) @@ -83,29 +83,67 @@ a0 : Q2 a1 : Q2 ae : Q2 + af : Q2 b0 : Q2 b1 : Q2 be : Q2 + bf : Q2 -- a.*f -aδ : Q2 → Σ2 → Q2 → Bool -aδ a0 ca a1 = true -aδ a0 _ _ = false -aδ a1 cf ae = true -aδ a1 _ a1 = true -aδ _ _ _ = false - a-end : Q2 → Bool a-end ae = true a-end _ = false +aδ : Q2 → Σ2 → Q2 +aδ a0 ca = a1 +aδ a0 _ = af +aδ a1 cf = ae +aδ a1 _ = a1 +aδ ae cf = ae +aδ ae _ = a1 +aδ _ _ = af +fa-a : Automaton Q2 Σ2 +fa-a = record { δ = aδ ; aend = a-end } + +test111 : Bool +test111 = accept fa-a a0 ( ca ∷ cf ∷ ca ∷ [] ) + +b-end : Q2 → Bool +b-end be = true +b-end _ = false + +bδ : Q2 → Σ2 → Q2 +bδ b0 cb = b1 +bδ b0 _ = bf +bδ b1 cf = be +bδ b1 _ = b1 +bδ be cf = be +bδ be _ = b1 +bδ _ _ = bf +fa-b : Automaton Q2 Σ2 +fa-b = record { δ = bδ ; aend = b-end } + +test115 : Bool +test115 = accept fa-b b0 ( cb ∷ cf ∷ cf ∷ [] ) + +open import regular-language + +test116 = split (accept fa-a a0) (accept fa-b b0) ( ca ∷ cf ∷ cb ∷ cf ∷ cf ∷ [] ) + +naδ : Q2 → Σ2 → Q2 → Bool +naδ a0 ca a1 = true +naδ a0 _ _ = false +naδ a1 cf ae = true +naδ a1 _ a1 = true +naδ _ _ _ = false + a-start : Q2 → Bool a-start a0 = true a-start _ = false nfa-a : NAutomaton Q2 Σ2 -nfa-a = record { Nδ = aδ ; Nend = a-end } +nfa-a = record { Nδ = naδ ; Nend = a-end } nfa-a-exists : (Q2 → Bool) → Bool nfa-a-exists p = p a0 \/ p a1 \/ p ae @@ -113,27 +151,23 @@ test-a1 : Bool test-a1 = Naccept nfa-a nfa-a-exists a-start ( ca ∷ cf ∷ ca ∷ [] ) -test-a2 = map reverse ( NtraceDepth nfa-a a-start (a0 ∷ a1 ∷ ae ∷ []) ( ca ∷ cf ∷ cf ∷ [] ) ) +-- test-a2 = map reverse ( NtraceDepth nfa-a a-start (a0 ∷ a1 ∷ ae ∷ []) ( ca ∷ cf ∷ cf ∷ [] ) ) -- b.*f -bδ : Q2 → Σ2 → Q2 → Bool -bδ ae cb b1 = true -bδ ae _ _ = false -bδ b1 cf be = true -bδ b1 _ b1 = true -bδ _ _ _ = false - -b-end : Q2 → Bool -b-end be = true -b-end _ = false +nbδ : Q2 → Σ2 → Q2 → Bool +nbδ ae cb b1 = true +nbδ ae _ _ = false +nbδ b1 cf be = true +nbδ b1 _ b1 = true +nbδ _ _ _ = false b-start : Q2 → Bool b-start ae = true b-start _ = false nfa-b : NAutomaton Q2 Σ2 -nfa-b = record { Nδ = bδ ; Nend = b-end } +nfa-b = record { Nδ = nbδ ; Nend = b-end } nfa-b-exists : (Q2 → Bool) → Bool nfa-b-exists p = p b0 \/ p b1 \/ p ae @@ -141,7 +175,7 @@ -- (a.*f)(b.*f) abδ : Q2 → Σ2 → Q2 → Bool -abδ x i y = aδ x i y \/ bδ x i y +abδ x i y = naδ x i y \/ nbδ x i y nfa-ab : NAutomaton Q2 Σ2 nfa-ab = record { Nδ = abδ ; Nend = b-end } @@ -155,7 +189,7 @@ test-ab2 : Bool test-ab2 = Naccept nfa-a nfa-a-exists a-start ( ca ∷ cf ∷ ca ∷ cb ∷ cb ∷ [] ) -test-ab3 = map reverse ( NtraceDepth nfa-ab a-start (a0 ∷ a1 ∷ ae ∷ b0 ∷ b1 ∷ be ∷ []) ( ca ∷ cf ∷ ca ∷ cb ∷ cf ∷ [] )) +-- test-ab3 = map reverse ( NtraceDepth nfa-ab a-start (a0 ∷ a1 ∷ ae ∷ b0 ∷ b1 ∷ be ∷ []) ( ca ∷ cf ∷ ca ∷ cb ∷ cf ∷ [] )) test112 : Automaton (Q2 → Bool) Σ2 test112 = subset-construction nfa-ab-exists nfa-ab @@ -165,3 +199,10 @@ test113 : Bool test113 = accept test112 a-start ( ca ∷ cf ∷ ca ∷ cb ∷ cb ∷ [] ) +-- + + + + + +
--- a/automaton-in-agda/src/regular-language.agda Thu Nov 09 18:04:55 2023 +0900 +++ b/automaton-in-agda/src/regular-language.agda Wed Nov 15 16:24:07 2023 +0900 @@ -143,8 +143,11 @@ open Split +AB→split1 : {Σ : Set} → (A B : List Σ → Bool ) → ( x y : List Σ ) → {z : List Σ} → A x ≡ true → B y ≡ true → z ≡ x ++ y → Split A B z +AB→split1 {Σ} A B x y {z} ax by z=xy = record { sp0 = x ; sp1 = y ; sp-concat = sym z=xy ; prop0 = ax ; prop1 = by } + list-empty++ : {Σ : Set} → (x y : List Σ) → x ++ y ≡ [] → (x ≡ [] ) ∧ (y ≡ [] ) -list-empty++ [] [] refl = record { proj1 = refl ; proj2 = refl } +list-empty++ [] [] _ = record { proj1 = refl ; proj2 = refl } list-empty++ [] (x ∷ y) () list-empty++ (x ∷ x₁) y () @@ -186,30 +189,46 @@ AB→split : {Σ : Set} → (A B : List Σ → Bool ) → ( x y : List Σ ) → A x ≡ true → B y ≡ true → split A B (x ++ y ) ≡ true AB→split {Σ} A B [] [] eqa eqb = begin - split A B [] - ≡⟨⟩ - A [] /\ B [] - ≡⟨ cong₂ (λ j k → j /\ k ) eqa eqb ⟩ + split A B [] ≡⟨⟩ + A [] /\ B [] ≡⟨ cong₂ (λ j k → j /\ k ) eqa eqb ⟩ true ∎ where open ≡-Reasoning AB→split {Σ} A B [] (h ∷ y ) eqa eqb = begin - split A B (h ∷ y ) - ≡⟨⟩ - A [] /\ B (h ∷ y) \/ split (λ t1 → A (h ∷ t1)) B y - ≡⟨ cong₂ (λ j k → j /\ k \/ split (λ t1 → A (h ∷ t1)) B y ) eqa eqb ⟩ - true /\ true \/ split (λ t1 → A (h ∷ t1)) B y - ≡⟨⟩ - true \/ split (λ t1 → A (h ∷ t1)) B y - ≡⟨⟩ - true - ∎ where open ≡-Reasoning + split A B (h ∷ y ) ≡⟨⟩ + A [] /\ B (h ∷ y) \/ split (λ t1 → A (h ∷ t1)) B y ≡⟨ cong₂ (λ j k → j /\ k \/ split (λ t1 → A (h ∷ t1)) B y ) eqa eqb ⟩ + true /\ true \/ split (λ t1 → A (h ∷ t1)) B y ≡⟨⟩ + true \/ split (λ t1 → A (h ∷ t1)) B y ≡⟨⟩ + true ∎ where open ≡-Reasoning AB→split {Σ} A B (h ∷ t) y eqa eqb = begin - split A B ((h ∷ t) ++ y) - ≡⟨⟩ + split A B ((h ∷ t) ++ y) ≡⟨⟩ A [] /\ B (h ∷ t ++ y) \/ split (λ t1 → A (h ∷ t1)) B (t ++ y) ≡⟨ cong ( λ k → A [] /\ B (h ∷ t ++ y) \/ k ) (AB→split {Σ} (λ t1 → A (h ∷ t1)) B t y eqa eqb ) ⟩ - A [] /\ B (h ∷ t ++ y) \/ true - ≡⟨ bool-or-3 ⟩ - true - ∎ where open ≡-Reasoning + A [] /\ B (h ∷ t ++ y) \/ true ≡⟨ bool-or-3 ⟩ + true ∎ where open ≡-Reasoning + +-- plit→AB1 : {Σ : Set} → (A B : List Σ → Bool ) → ( x : List Σ ) → Split A B x → split A B x ≡ true +-- plit→AB1 {Σ} A B [] S = begin +-- split A B [] ≡⟨⟩ +-- A [] /\ B [] ≡⟨ cong₂ _/\_ a=t b=t ⟩ +-- true /\ true ≡⟨ bool-and-tt refl refl ⟩ +-- true ∎ where +-- open ≡-Reasoning +-- a=t : A [] ≡ true +-- a=t = begin +-- A [] ≡⟨ cong (λ k → A k) (sym (proj1 (list-empty++ (sp0 S) (sp1 S) (sp-concat S)))) ⟩ +-- A (sp0 S) ≡⟨ prop0 S ⟩ +-- true ∎ where open ≡-Reasoning +-- b=t : B [] ≡ true +-- b=t = begin +-- B [] ≡⟨ cong (λ k → B k) (sym (proj2 (list-empty++ (sp0 S) (sp1 S) (sp-concat S)))) ⟩ +-- B (sp1 S) ≡⟨ prop1 S ⟩ +-- true ∎ where open ≡-Reasoning +-- plit→AB1 {Σ} A B (h ∷ t ) S = begin +-- split A B (h ∷ t ) ≡⟨⟩ +-- A [] /\ B (h ∷ t) \/ split (λ t1 → A (h ∷ t1)) B t ≡⟨ cong (λ k → A [] /\ B (h ∷ t) \/ k ) +-- (split→AB1 {Σ} (λ t1 → A (h ∷ t1)) B t ? ) ⟩ +-- A [] /\ B (h ∷ t) \/ true ≡⟨ bool-or-3 ⟩ +-- true ∎ where open ≡-Reasoning +-- +