Mercurial > hg > Members > kono > Proof > automaton
changeset 96:3d362c31b97e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Nov 2019 12:23:43 +0900 |
parents | 86d390666078 |
children | c1282e442d28 |
files | agda/regular-language.agda |
diffstat | 1 files changed, 22 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Mon Nov 11 02:22:02 2019 +0900 +++ b/agda/regular-language.agda Mon Nov 11 12:23:43 2019 +0900 @@ -281,26 +281,39 @@ open Found lemma13 : (x : List Σ) → (nq : states A ∨ states B → Bool ) → Naccept NFA finab nq x ≡ true - → (qa : states A ) → ( (q : states A ∨ states B) → nq q ≡ true → q ≡ case1 qa ) + → (qa : states A ) → (nq (case1 qa) ≡ true) → ( (q : states A ∨ states B) → nq q ≡ true → q ≡ case1 qa ) → split (accept (automaton A) qa ) (contain B) x ≡ true - lemma13 [] nq fn qa qat with found← finab fn + lemma13 [] nq fn qa qat qa=q with found← finab fn ... | S = lemma16 where lemma15 : (found-q S) ≡ case1 qa - lemma15 = qat (found-q S) (bool-∧→tt-0 (found-p S)) + lemma15 = qa=q (found-q S) (bool-∧→tt-0 (found-p S)) lemma16 : aend (automaton A) qa /\ aend (automaton B) (astart B) ≡ true lemma16 with lemma15 ... | refl = bool-∧→tt-1 (found-p S) - lemma13 (h ∷ t) nq fn qa qat with bool-≡-? ((aend (automaton A) qa) /\ accept (automaton B) (δ (automaton B) (astart B) h) t ) true + lemma13 (h ∷ t) nq fn qa qat qa=q with bool-≡-? ((aend (automaton A) qa) /\ accept (automaton B) (δ (automaton B) (astart B) h) t ) true ... | yes eq = bool-or-41 eq ... | no ne = bool-or-31 lemma14 where - lemma11 : (q : states A ∨ states B) → exists finab (λ qn → nq qn /\ Nδ NFA qn h q) ≡ true → q ≡ case1 (δ (automaton A) qa h) - lemma11 (case1 qa') eq = {!!} - lemma11 (case2 qb) eq = {!!} + lemma11 : (q : states A ∨ states B) + → exists finab (λ qn → nq qn /\ Nδ NFA qn h q) ≡ true + → q ≡ case1 (δ (automaton A) qa h) + lemma11 q ex = lemma17 (subst (λ k → exists finab (λ qn → k qn ) ≡ true ) (f-extensionality finab (λ qn → sym (lemma19 qn) )) ex ) where + lemma19 = λ qn → cong ( λ k → nq qn /\ Nδ NFA k h q ) (sym ( qa=q qn (bool-∧→tt-0 {!!} ) )) + lemma17 : exists finab (λ qn → nq qn /\ Nδ NFA (case1 qa) h q) ≡ true → q ≡ case1 (δ (automaton A) qa h) + lemma17 = {!!} + lemma18 : (qn : states A ∨ states B) → nq qn /\ Nδ NFA qn h q ≡ true → nq qn /\ Nδ NFA (case1 qa) h q ≡ true + lemma18 qn eq = begin + nq qn /\ Nδ NFA (case1 qa) h q + ≡⟨ cong ( λ k → nq qn /\ Nδ NFA k h q ) (sym ( qa=q qn (bool-∧→tt-0 eq ) )) ⟩ + nq qn /\ Nδ NFA qn h q + ≡⟨ eq ⟩ + true + ∎ where open ≡-Reasoning + lemma14 : split (λ t1 → accept (automaton A) qa (h ∷ t1)) (contain B) t ≡ true - lemma14 = lemma13 t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) lemma11 + lemma14 = lemma13 t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) (nmove (case1 qa) nq qat h) lemma11 lemma10 : Naccept NFA finab (equal? finab (case1 (astart A))) x ≡ true → split (contain A) (contain B) x ≡ true - lemma10 CC = lemma13 x (Concat-NFA-start A B ) CC (astart A) lemma12 where + lemma10 CC = lemma13 x (Concat-NFA-start A B ) CC (astart A) (equal?-refl finab) lemma12 where lemma12 : (q : states A ∨ states B) → Concat-NFA-start A B q ≡ true → q ≡ case1 (astart A) lemma12 q eq = sym ( equal→refl finab eq )