Mercurial > hg > Members > kono > Proof > automaton
changeset 199:4a83abf7b822
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 17 Jun 2021 22:42:36 +0900 |
parents | 4b452c9d7e7b |
children | a5c8a90615be |
files | automaton-in-agda/src/gcd.agda automaton-in-agda/src/prime.agda automaton-in-agda/src/root2.agda |
diffstat | 3 files changed, 66 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Thu Jun 17 17:16:36 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Thu Jun 17 22:42:36 2021 +0900 @@ -30,6 +30,12 @@ FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa } +--decD : {n m : ℕ} → Dec (Dividable n m) +--decD = {!!} + +--divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n +--divdable^2 n k dn2 = {!!} + decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } = decf1 {n} {k} f r fa where @@ -278,3 +284,7 @@ gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩ 1 ∎ where open ≡-Reasoning +div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i) +div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where + div+11 : Dividable k 1 + div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) )
--- a/automaton-in-agda/src/prime.agda Thu Jun 17 17:16:36 2021 +0900 +++ b/automaton-in-agda/src/prime.agda Thu Jun 17 22:42:36 2021 +0900 @@ -21,31 +21,69 @@ field factor : ℕ prime : Prime factor + p>0 : factor > 1 dividable : Dividable factor n -isPrime : ( n : ℕ ) → Dec ( Prime n ) -isPrime = {!!} +PrimeP : ( n : ℕ ) → Dec ( Prime n ) +PrimeP 0 = yes record { isPrime = λ j () } +PrimeP (suc n) = isPrime1 (suc n) n a<sa (λ i m<i i<n → {!!} ) where + isPrime1 : ( n m : ℕ ) → m < n → ( (i : ℕ) → m ≤ i → i < n → gcd n i ≡ 1 ) → Dec ( Prime n ) + isPrime1 n zero m<n lt = yes record { isPrime = λ j j<i → lt j z≤n {!!} } + isPrime1 n (suc m) m<n lt with <-cmp (gcd n (suc m)) 1 + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = isPrime1 n m {!!} {!!} + ... | tri> ¬a ¬b c = no ( λ p → nat-≡< (sym (Prime.isPrime p (suc m) {!!} )) c ) -nonPrime : ( n : ℕ ) → ¬ Prime n → NonPrime n -nonPrime n np = np1 n (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n ) ) where +nonPrime : { n : ℕ } → ¬ Prime n → NonPrime n +nonPrime {n} np = np1 n (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n ) ) where np1 : ( m : ℕ ) → ( (j : ℕ ) → m ≤ j → j < n → gcd n j ≡ 1 ) → NonPrime n np1 zero mg = ⊥-elim ( np record { isPrime = λ j lt → mg j z≤n lt } ) -- zero < j , j < n np1 (suc m) mg with <-cmp ( gcd n (suc m) ) 1 ... | tri< a ¬b ¬c = {!!} ... | tri≈ ¬a b ¬c = np1 m {!!} - ... | tri> ¬a ¬b c = record { factor = gcd n (suc m) ; prime = {!!} ; dividable = record { factor = {!!} ; is-factor = {!!} } } + ... | tri> ¬a ¬b c = record { factor = gcd n (suc m) ; prime = {!!} ; p>0 = c ; dividable = record { factor = {!!} ; is-factor = {!!} } } + prime-is-infinite : (max-prime : ℕ ) → ¬ ( (j : ℕ) → max-prime < j → ¬ Prime j ) prime-is-infinite zero pmax = pmax 1 {!!} record { isPrime = λ n lt → {!!} } -prime-is-infinite (suc m) pmax = pmax (suc (factorial (suc m))) f>m record { isPrime = λ n lt → fact n lt } where +prime-is-infinite (suc m) pmax = getPrime where -- pmax (suc (factorial (suc m))) f>m {!!} where factorial : (n : ℕ) → ℕ factorial zero = 1 factorial (suc n) = (suc n) * (factorial n) + prime<max : (n : ℕ ) → Prime n → n < suc m + prime<max n p with <-cmp n m + ... | tri< a ¬b ¬c = <-trans a {!!} -- suc n ≤ suc m → suc n ≤ m + ... | tri≈ ¬a refl ¬c = ⊥-elim ( pmax n {!!} p ) + ... | tri> ¬a ¬b c = ⊥-elim ( pmax n {!!} p ) f>m : suc m < suc (factorial (suc m)) f>m = {!!} - factm : (n m : ℕ ) → n < (suc m) → Dividable n (factorial m ) - factm = {!!} - fact : (n : ℕ ) → n < (suc (factorial (suc m))) → gcd (suc (factorial (suc m))) n ≡ 1 - fact n lt = fact12 (nonPrime (factorial (suc m )) ( pmax (factorial (suc m )) {!!} )) where - fact12 : NonPrime (factorial (suc m)) → gcd (suc (factorial (suc m))) n ≡ 1 - fact12 np = {!!} + fact< : (n : ℕ) → n < suc m → Dividable n ( factorial (suc m) ) + fact< n n<m = record { factor = F.f1 (fact1 m init1) ; is-factor = last } where + record F ( n m : ℕ) : Set where + field + f1 : ℕ + is-f1 : ( n < m ) → f1 * n ≡ factorial (suc m) + init : F n 0 + init = record { f1 = 1 ; is-f1 = {!!} } + init1 : F n ( m - m ) + init1 = subst (λ k → F n k ) (sym (minus<=0 {m} ≤-refl)) init + fact1 : (j : ℕ ) → F n ((suc m) - suc j) → F n j + fact1 zero f = record { f1 = F.f1 f ; is-f1 = {!!} } + fact1 (suc j) f with <-cmp n j + ... | tri< a ¬b ¬c = record { f1 = F.f1 f * (suc j) ; is-f1 = {!!} } + ... | tri≈ ¬a b ¬c = record { f1 = F.f1 f ; is-f1 = {!!} } + ... | tri> ¬a ¬b c = record { f1 = F.f1 f * (suc j) ; is-f1 = {!!} } + last : F.f1 (fact1 m init1 ) * n + 0 ≡ factorial (suc m) + last = begin + F.f1 (fact1 m init1) * n + 0 ≡⟨ +-comm _ 0 ⟩ + F.f1 (fact1 m init1) * n ≡⟨ F.is-f1 (fact1 m init1) {!!} ⟩ + factorial (suc m) ∎ where open ≡-Reasoning + fact : (n : ℕ) → Prime n → Dividable n ( factorial (suc m) ) + fact n p = fact< n ( prime<max n p ) + -- div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i) + getPrime : ⊥ + getPrime with PrimeP ( suc (factorial (suc m)) ) + ... | yes p = pmax _ f>m p + ... | no np = div+1 (NonPrime.p>0 p1) (fact (NonPrime.factor p1) (NonPrime.prime p1) ) (NonPrime.dividable p1) where + p1 : NonPrime ( suc (factorial (suc m)) ) + p1 = nonPrime np
--- a/automaton-in-agda/src/root2.agda Thu Jun 17 17:16:36 2021 +0900 +++ b/automaton-in-agda/src/root2.agda Thu Jun 17 22:42:36 2021 +0900 @@ -53,12 +53,11 @@ open Factor --- gcd-div : ( i j k : ℕ ) → (if : Factor k i) (jf : Factor k j ) --- → remain if ≡ 0 → remain jf ≡ 0 +-- gcd-div : ( i j k : ℕ ) → (if : Dividable k i) (jf : Dividable k j ) -- → Dividable k ( gcd i j ) root2-irrational : ( n m : ℕ ) → n > 1 → m > 1 → 2 * n * n ≡ m * m → ¬ (gcd n m ≡ 1) -root2-irrational n m n>1 m>1 2nm = rot13 ( gcd-div n m 2 (s≤s (s≤s z≤n)) {!!} {!!} ) where +root2-irrational n m n>1 m>1 2nm = rot13 ( gcd-div n m 2 (s≤s (s≤s z≤n)) dn dm ) where rot13 : {m : ℕ } → Dividable 2 m → m ≡ 1 → ⊥ rot13 d refl with Dividable.factor d | Dividable.is-factor d ... | zero | () @@ -112,5 +111,9 @@ Even.j E * 2 ≡⟨ *-comm (Even.j E) 2 ⟩ 2 * Even.j E ≡⟨ sym ( Even.is-twice E ) ⟩ m ∎ where open ≡-Reasoning + dn : Dividable 2 n + dn = record { factor = factor f2 ; is-factor = subst (λ k → factor f2 * 2 + k ≡ n ) (f3 n rot7) (is-factor f2) } + dm : Dividable 2 m + dm = record { factor = factor fm ; is-factor = is-factor fm }