Mercurial > hg > Members > kono > Proof > automaton
changeset 200:a5c8a90615be
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Jun 2021 07:54:25 +0900 |
parents | 4a83abf7b822 |
children | db05b4df5b67 |
files | automaton-in-agda/src/prime.agda |
diffstat | 1 files changed, 67 insertions(+), 33 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/prime.agda Thu Jun 17 22:42:36 2021 +0900 +++ b/automaton-in-agda/src/prime.agda Fri Jun 18 07:54:25 2021 +0900 @@ -13,22 +13,22 @@ record Prime (i : ℕ ) : Set where field + p>0 : i > 1 isPrime : ( j : ℕ ) → j < i → gcd i j ≡ 1 -open ≡-Reasoning record NonPrime ( n : ℕ ) : Set where field factor : ℕ prime : Prime factor - p>0 : factor > 1 dividable : Dividable factor n PrimeP : ( n : ℕ ) → Dec ( Prime n ) -PrimeP 0 = yes record { isPrime = λ j () } +PrimeP 0 = no (λ p → ⊥-elim ( nat-<> (Prime.p>0 p) (s≤s z≤n))) +PrimeP 1 = no (λ p → ⊥-elim ( nat-≤> (Prime.p>0 p) (s≤s (≤-refl)))) PrimeP (suc n) = isPrime1 (suc n) n a<sa (λ i m<i i<n → {!!} ) where isPrime1 : ( n m : ℕ ) → m < n → ( (i : ℕ) → m ≤ i → i < n → gcd n i ≡ 1 ) → Dec ( Prime n ) - isPrime1 n zero m<n lt = yes record { isPrime = λ j j<i → lt j z≤n {!!} } + isPrime1 n zero m<n lt = yes record { isPrime = λ j j<i → lt j z≤n {!!} ; p>0 = {!!} } isPrime1 n (suc m) m<n lt with <-cmp (gcd n (suc m)) 1 ... | tri< a ¬b ¬c = {!!} ... | tri≈ ¬a b ¬c = isPrime1 n m {!!} {!!} @@ -37,53 +37,87 @@ nonPrime : { n : ℕ } → ¬ Prime n → NonPrime n nonPrime {n} np = np1 n (λ j n≤j j<n → ⊥-elim (nat-≤> n≤j j<n ) ) where np1 : ( m : ℕ ) → ( (j : ℕ ) → m ≤ j → j < n → gcd n j ≡ 1 ) → NonPrime n - np1 zero mg = ⊥-elim ( np record { isPrime = λ j lt → mg j z≤n lt } ) -- zero < j , j < n + np1 zero mg = ⊥-elim ( np record { isPrime = λ j lt → mg j z≤n lt ; p>0 = {!!} } ) -- zero < j , j < n np1 (suc m) mg with <-cmp ( gcd n (suc m) ) 1 ... | tri< a ¬b ¬c = {!!} ... | tri≈ ¬a b ¬c = np1 m {!!} - ... | tri> ¬a ¬b c = record { factor = gcd n (suc m) ; prime = {!!} ; p>0 = c ; dividable = record { factor = {!!} ; is-factor = {!!} } } + ... | tri> ¬a ¬b c = record { factor = gcd n (suc m) ; prime = {!!} ; dividable = record { factor = {!!} ; is-factor = {!!} } } prime-is-infinite : (max-prime : ℕ ) → ¬ ( (j : ℕ) → max-prime < j → ¬ Prime j ) -prime-is-infinite zero pmax = pmax 1 {!!} record { isPrime = λ n lt → {!!} } -prime-is-infinite (suc m) pmax = getPrime where -- pmax (suc (factorial (suc m))) f>m {!!} where +prime-is-infinite zero pmax = pmax 3 (s≤s z≤n) record { isPrime = λ n lt → {!!} ; p>0 = {!!} } +prime-is-infinite (suc m) pmax = getPrime where factorial : (n : ℕ) → ℕ factorial zero = 1 factorial (suc n) = (suc n) * (factorial n) - prime<max : (n : ℕ ) → Prime n → n < suc m - prime<max n p with <-cmp n m - ... | tri< a ¬b ¬c = <-trans a {!!} -- suc n ≤ suc m → suc n ≤ m - ... | tri≈ ¬a refl ¬c = ⊥-elim ( pmax n {!!} p ) - ... | tri> ¬a ¬b c = ⊥-elim ( pmax n {!!} p ) + prime<max : (n : ℕ ) → Prime n → n < suc (suc m) + prime<max n p with <-cmp n (suc m) + ... | tri< a ¬b ¬c = ≤-trans a refl-≤s + ... | tri≈ ¬a refl ¬c = ≤-refl + ... | tri> ¬a ¬b c = ⊥-elim ( pmax n c p ) + factorial-mono : (n : ℕ) → factorial n ≤ factorial (suc n) + factorial-mono n = begin + factorial n ≤⟨ x≤x+y ⟩ + factorial n + n * factorial n ≡⟨ refl ⟩ + (suc n) * factorial n ≡⟨ refl ⟩ + factorial (suc n) ∎ where open ≤-Reasoning + factorial≥1 : {m : ℕ} → 1 ≤ factorial m + factorial≥1 {zero} = ≤-refl + factorial≥1 {suc m} = begin + 1 ≤⟨ s≤s z≤n ⟩ + (suc m) * 1 ≤⟨ *-monoʳ-≤ (suc m) (factorial≥1 {m}) ⟩ + (suc m) * factorial m ≡⟨ refl ⟩ + factorial (suc m) ∎ where open ≤-Reasoning + factorial⟩m : (m : ℕ) → m ≤ factorial m + factorial⟩m zero = z≤n + factorial⟩m (suc m) = begin + suc m ≡⟨ cong suc (+-comm 0 _) ⟩ + 1 * suc m ≡⟨ *-comm 1 _ ⟩ + (suc m) * 1 ≤⟨ *-monoʳ-≤ (suc m) (factorial≥1 {m}) ⟩ + (suc m) * factorial m ≡⟨ refl ⟩ + factorial (suc m) ∎ where open ≤-Reasoning + -- *-monoˡ-≤ (suc m) {!!} f>m : suc m < suc (factorial (suc m)) - f>m = {!!} - fact< : (n : ℕ) → n < suc m → Dividable n ( factorial (suc m) ) - fact< n n<m = record { factor = F.f1 (fact1 m init1) ; is-factor = last } where - record F ( n m : ℕ) : Set where + f>m = begin + suc (suc m) ≡⟨ cong (λ k → 1 + suc k ) (+-comm _ m) ⟩ + suc (1 + 1 * m) ≡⟨ cong (λ k → suc (1 + k )) (*-comm 1 m) ⟩ + suc (1 + m * 1) ≤⟨ s≤s (s≤s (*-monoʳ-≤ m (factorial≥1 {m}) )) ⟩ + suc (1 + m * factorial m) ≤⟨ s≤s (+-monoˡ-≤ _ (factorial≥1 {m})) ⟩ + suc (factorial m + m * factorial m) ≡⟨ refl ⟩ + suc (factorial (suc m)) ∎ where open ≤-Reasoning + fact< : (n : ℕ) → 0 < n → n < suc (suc m) → Dividable n ( factorial (suc m) ) + fact< n 0<n n<m = record { factor = F.f1 (fact1 m init1) ? ? ? ; is-factor = last } where + record F (m : ℕ) : Set where field - f1 : ℕ - is-f1 : ( n < m ) → f1 * n ≡ factorial (suc m) - init : F n 0 - init = record { f1 = 1 ; is-f1 = {!!} } - init1 : F n ( m - m ) - init1 = subst (λ k → F n k ) (sym (minus<=0 {m} ≤-refl)) init - fact1 : (j : ℕ ) → F n ((suc m) - suc j) → F n j - fact1 zero f = record { f1 = F.f1 f ; is-f1 = {!!} } + f1 : (n : ℕ ) → 0 < n → n < suc (suc m ) → ℕ + is-f1 : (0<n : 0 < n ) → (n<m : n < suc (suc m )) → f1 n 0<n n<m * n ≡ factorial (suc m) + init0 : (n : ℕ) → 0 < n → n < 2 → 1 * n ≡ factorial 1 + init0 (suc zero) (s≤s lt) (s≤s (s≤s z≤n)) = refl + init : F 0 + init = record { f1 = ? ; is-f1 = λ 0<n lt → init0 n 0<n lt } where + init1 : F ( m - m ) + init1 = subst (λ k → F k ) (sym (minus<=0 {m} ≤-refl)) init + fact1 : (j : ℕ ) → F ((suc m) - suc j) → F j + fact1 zero f = record { f1 = ? ; is-f1 = fact2 } where + fact3 : 0 < n → n < suc (suc m) → F.f1 f n ? ? * n ≡ factorial (suc m) + fact3 = ? -- F.is-f1 f ? ? + fact2 : 0 < n → n < 2 → F.f1 f n ? ? * n ≡ factorial 1 + fact2 = {!!} fact1 (suc j) f with <-cmp n j - ... | tri< a ¬b ¬c = record { f1 = F.f1 f * (suc j) ; is-f1 = {!!} } - ... | tri≈ ¬a b ¬c = record { f1 = F.f1 f ; is-f1 = {!!} } - ... | tri> ¬a ¬b c = record { f1 = F.f1 f * (suc j) ; is-f1 = {!!} } - last : F.f1 (fact1 m init1 ) * n + 0 ≡ factorial (suc m) + ... | tri< a ¬b ¬c = record { f1 = ? ; is-f1 = {!!} } + ... | tri≈ ¬a refl ¬c = record { f1 = ? ; is-f1 = λ lt → {!!} } + ... | tri> ¬a ¬b c = record { f1 = ? ; is-f1 = λ lt → {!!} } + last : F.f1 (fact1 m init1 ) ? ? ? * n + 0 ≡ factorial (suc m) last = begin - F.f1 (fact1 m init1) * n + 0 ≡⟨ +-comm _ 0 ⟩ - F.f1 (fact1 m init1) * n ≡⟨ F.is-f1 (fact1 m init1) {!!} ⟩ + F.f1 (fact1 m init1) ? ? ? * n + 0 ≡⟨ +-comm _ 0 ⟩ + F.f1 (fact1 m init1) ? ? ? * n ≡⟨ F.is-f1 (fact1 m init1) 0<n n<m ⟩ factorial (suc m) ∎ where open ≡-Reasoning fact : (n : ℕ) → Prime n → Dividable n ( factorial (suc m) ) - fact n p = fact< n ( prime<max n p ) + fact n p = fact< n (<-trans (s≤s z≤n) (Prime.p>0 p)) ( prime<max n p ) -- div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i) getPrime : ⊥ getPrime with PrimeP ( suc (factorial (suc m)) ) ... | yes p = pmax _ f>m p - ... | no np = div+1 (NonPrime.p>0 p1) (fact (NonPrime.factor p1) (NonPrime.prime p1) ) (NonPrime.dividable p1) where + ... | no np = div+1 (Prime.p>0 (NonPrime.prime p1)) (fact (NonPrime.factor p1) (NonPrime.prime p1) ) (NonPrime.dividable p1) where p1 : NonPrime ( suc (factorial (suc m)) ) p1 = nonPrime np