Mercurial > hg > Members > kono > Proof > automaton
changeset 302:55f8031e4214
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jan 2022 10:36:52 +0900 |
parents | 30033f273f1d |
children | 5261402429f9 |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 25 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Fri Dec 31 23:06:08 2021 +0900 +++ b/automaton-in-agda/src/non-regular.agda Sat Jan 01 10:36:52 2022 +0900 @@ -105,7 +105,7 @@ open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -record TA1 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) ( q qd : Q ) (is : List Σ) : Set where +record TA1 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) ( q qd : Q ) (is : List Σ) : Set where field y z : List Σ yz=is : y ++ z ≡ is @@ -128,36 +128,42 @@ make-TA {Q} {Σ} fa finq q qd is tr dup = tra-phase1 q is tr dup where open TA tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) - → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa q qd is + → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa finq q qd is tra-phase2 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect ( equal? finq qd) q ... | true | record { eq = eq } = record { y = [] ; z = i ∷ is ; yz=is = refl ; trace-z = subst (λ k → Trace fa (i ∷ is) k ) (sym (equal→refl finq eq)) (tnext q tr) ; trace-yz = tnext q tr } ... | false | record { eq = eq } = record { y = i ∷ TA1.y ta ; z = TA1.z ta ; yz=is = cong (i ∷_ ) (TA1.yz=is ta ) ; trace-z = TA1.trace-z ta ; trace-yz = tnext q ( TA1.trace-yz ta ) } where - ta : TA1 fa (δ fa q i) qd is + ta : TA1 fa finq (δ fa q i) qd is ta = tra-phase2 (δ fa q i) is tr p tra-phase1 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase1 finq qd (tr→qs fa is q tr) ≡ true → TA fa q is tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q | phase1 finq qd (tr→qs fa is (δ fa q i) tr) | inspect ( phase1 finq qd) (tr→qs fa is (δ fa q i) tr) ... | true | record { eq = eq } | false | record { eq = np} = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) ; trace-xyz = tnext q (TA1.trace-yz ta) - ; trace-xyyz = tnext q ( tra-02 (TA1.y ta) (δ fa q i) (sym (equal→refl finq eq)) {!!} {!!} {!!} ) } where - -- Trace fa ([] ++ (i ∷ TA1.y ta) ++ (i ∷ TA1.y ta) ++ TA1.z ta) q - -- tra-02 (i ∷ TA1.y ta) q (sym (equal→refl finq eq)) (tnext q (TA1.trace-yz ta)) {!!} {!!} } where - ta : TA1 fa (δ fa q i ) qd is + ; trace-xyyz = tnext q {!!} } where + ta : TA1 fa finq (δ fa q i ) qd is ta = tra-phase2 (δ fa q i ) is tr p - tra-02 : (y1 : List Σ) → (q0 : Q) → q ≡ qd → (tr : Trace fa (y1 ++ TA1.z ta) q0) - → phase2 finq qd (tr→qs fa (y1 ++ TA1.z ta) q0 tr) ≡ true - → phase1 finq qd (tr→qs fa (y1 ++ TA1.z ta) q0 tr) ≡ false - → Trace fa (y1 ++ i ∷ TA1.y ta ++ TA1.z ta) q0 - tra-02 [] q0 q=qd tr p np with equal? finq qd q0 | inspect ( equal? finq qd) q0 - ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ TA1.y ta ++ TA1.z ta) k ) {!!} (tnext q (TA1.trace-yz ta) ) where - tra-03 : q ≡ q0 - tra-03 = trans q=qd ((equal→refl finq eq) ) - ... | false | record { eq = ne } = {!!} - tra-02 (y1 ∷ ys) q0 q=qd (tnext q tr) p np with equal? finq qd q | inspect ( equal? finq qd) q - ... | true | record { eq = eq } = {!!} - ... | false | record { eq = ne } = {!!} -- tnext q (tra-02 ys (δ fa q y1) q=qd tr p np ) + tra-02 : (y1 z1 : List Σ) → (qd : Q) → (tr : Trace fa (y1 ++ z1) qd) → (trz : Trace fa z1 qd) + → phase2 finq qd (tr→qs fa (y1 ++ z1) qd tr) ≡ true + → phase1 finq qd (tr→qs fa (y1 ++ z1) qd tr) ≡ false + → Trace fa (y1 ++ y1 ++ z1) qd + tra-02 [] z1 qd tryz trz p1 np1 = trz + tra-02 (i ∷ y1) z1 qd (tnext q tr) trz p1 np1 = {!!} where + tryz = tnext q tr + tra-04 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) + → (qs zqs : List Q) + → tr→qs fa (y2 ++ z1) q tr ≡ qs ++ zqs + → phase1 finq qd (qs ++ zqs) ≡ false -- no two qd + → phase2 finq qd zqs ≡ true -- at least one od + → Trace fa (y2 ++ (i ∷ y1) ++ z1) q + tra-04 [] q tr qs zqs eq p2 np2 with equal? finq qd q | inspect (equal? finq qd) q + ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ y1 ++ z1) k) (equal→refl finq eq) tryz + ... | false | record { eq = ne } = {!!} -- qs ≡ [] → ⊥ + tra-04 (y0 ∷ y2) q (tnext q tr) [] (q' ∷ zqs) eq p2 np2 = {!!} + tra-04 (y0 ∷ y2) q (tnext q tr) (q' ∷ qs) zqs eq p2 np2 with equal? finq qd q | inspect (equal? finq qd) q + ... | true | record { eq = eq } = {!!} -- y2 + z1 contains two qd + ... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr qs zqs {!!} {!!} np2 ) ... | true | record { eq = eq } | true | record { eq = np} = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is