Mercurial > hg > Members > kono > Proof > automaton
changeset 322:596913103389
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Jan 2022 21:47:24 +0900 |
parents | b065ba2f68c5 |
children | 7f806a28a866 |
files | automaton-in-agda/src/root2.agda |
diffstat | 1 files changed, 53 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/root2.agda Fri Jan 14 19:11:12 2022 +0900 +++ b/automaton-in-agda/src/root2.agda Fri Jan 14 21:47:24 2022 +0900 @@ -142,6 +142,12 @@ ri=jd : ( i j : ℕ) → (0<i : 0 < i ) → (0<j : 0 < j) → Rational.j (mkRational i j 0<j) ≡ Dividable.factor (proj2 (GCD.gcd-dividable i j)) ri=jd (suc i₁) (suc j₁) 0<i (s≤s 0<j₁) = refl + r0=id : ( i j : ℕ) → (0=i : 0 ≡ i ) → (0<j : 0 < j) + → Rational.i (mkRational i j 0<j) ≡ 0 + r0=id 0 j refl 0<j = refl + r0=jd : ( i j : ℕ) → (0=i : 0 ≡ i ) → (0<j : 0 < j) + → Rational.j (mkRational i j 0<j) ≡ 1 + r0=jd 0 j refl 0<j = refl d : ℕ d = gcd i j r7 : i > 0 → d > 0 @@ -157,18 +163,28 @@ d1 ∎ where open ≡-Reasoning r4 : p * Rational.j r * Rational.j r ≡ Rational.i r * Rational.i r r4 with <-cmp (Rational.i r * Rational.i r) 0 - ... | tri≈ ¬a b ¬c = {!!} + ... | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< (begin + 0 ≡⟨ sym (r0=id i j (sym b) 0<j ) ⟩ + Rational.i (mkRational (Rational.i r * Rational.i r) (Rational.j r * Rational.j r) _ ) ≡⟨ sym rr ⟩ + p * Rational.j (mkRational (Rational.i r * Rational.i r) (Rational.j r * Rational.j r) _ ) ≡⟨ cong (λ k → p * k ) (r0=jd i j (sym b) 0<j ) ⟩ + p * 1 ≡⟨ m*1=m ⟩ + p ∎ ) p>0 ) where open ≡-Reasoning ... | tri> ¬a ¬b c = begin p * Rational.j r * Rational.j r ≡⟨ *-cancel-left (r6 c) ( begin - d2 * (p * Rational.j r * Rational.j r) ≡⟨ {!!} ⟩ + d2 * ((p * Rational.j r) * Rational.j r) ≡⟨ sym (*-assoc d2 _ _) ⟩ + (d2 * ( p * Rational.j r )) * Rational.j r ≡⟨ cong (λ k → k * Rational.j r) (sym (*-assoc d2 _ _ )) ⟩ (d2 * p) * Rational.j r * Rational.j r ≡⟨ cong (λ k → k * Rational.j r * Rational.j r) (r8 c) ⟩ d1 * Rational.j r * Rational.j r ≡⟨ *-cancel-left (r7 c) ( begin - d * (d1 * Rational.j r * Rational.j r) ≡⟨ {!!} ⟩ - d * d1 * Rational.j r * Rational.j r ≡⟨ {!!} ⟩ + d * ((d1 * Rational.j r) * Rational.j r) ≡⟨ cong (λ k → d * k ) (*-assoc d1 _ _ )⟩ + d * (d1 * (Rational.j r * Rational.j r)) ≡⟨ sym (*-assoc d _ _) ⟩ + (d * d1) * (Rational.j r * Rational.j r) ≡⟨ cong (λ k → k * j) (*-comm d _ ) ⟩ + (d1 * d) * j ≡⟨ cong (λ k → k * j) (+-comm 0 (d1 * d) ) ⟩ (d1 * d + 0) * j ≡⟨ cong (λ k → k * j ) (Dividable.is-factor (proj1 (GCD.gcd-dividable i j)) ) ⟩ i * j ≡⟨ *-comm i j ⟩ j * i ≡⟨ cong (λ k → k * i ) (sym (Dividable.is-factor (proj2 (GCD.gcd-dividable i j))) ) ⟩ - (d2 * GCD.gcd i j + 0) * i ≡⟨ {!!} ⟩ + (d2 * GCD.gcd i j + 0) * i ≡⟨ cong (λ k → k * i ) (+-comm (d2 * d ) 0) ⟩ + (d2 * d) * i ≡⟨ cong (λ k → k * i ) (*-comm d2 _ ) ⟩ + (d * d2) * i ≡⟨ *-assoc d _ _ ⟩ d * (d2 * (Rational.i r * Rational.i r)) ∎ ) ⟩ d2 * (Rational.i r * Rational.i r) ∎ ) ⟩ Rational.i r * Rational.i r ∎ where open ≡-Reasoning @@ -178,9 +194,38 @@ root-prime-irrational1 : ( p : ℕ ) → Prime p → ( r : Rational ) → ¬ ( Rational* r r r= p ) root-prime-irrational1 p pr r div with <-cmp (Rational.j r) 1 ... | tri< a ¬b ¬c = ⊥-elim (nat-≤> (Rational.0<j r) a ) -... | tri≈ ¬a b ¬c = {!!} +... | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< r04 (r03 r01)) where + i = Rational.i r + j = Rational.j r + r00 : p * j * j ≡ i * i + r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div + r01 : p ≡ i * i + r01 = {!!} + r02 : (i : ℕ) → p ≡ i * i → gcd p i ≡ i + r02 = {!!} + r03 : p ≡ i * i → i > 1 + r03 = {!!} + r04 : 1 ≡ i + r04 = begin + 1 ≡⟨ {!!} ⟩ + gcd p i ≡⟨ {!!} ⟩ + i ∎ where open ≡-Reasoning ... | tri> ¬a ¬b c with <-cmp (Rational.i r) 1 -... | tri< a ¬b₁ ¬c = {!!} -... | tri≈ ¬a₁ b ¬c = {!!} +... | tri< a ¬b₁ ¬c = {!!} where + i = Rational.i r + j = Rational.j r + r00 : p * j * j ≡ i * i + r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div + r06 : i ≡ 0 + r06 = {!!} + r05 : p * j * j ≡ i * i -- j > 0 → p * j * j > 0 + r05 = {!!} +... | tri≈ ¬a₁ b ¬c = {!!} where + i = Rational.i r + j = Rational.j r + r00 : p * j * j ≡ i * i + r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div + r07 : p * j * j ≡ i * i -- j > 0 → p * j * j > 0 + r07 = {!!} ... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a<sa (Prime.p>1 pr ) ) r div) (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) )