Mercurial > hg > Members > kono > Proof > automaton
changeset 61:6d50a933bcb3
add puzzle
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 28 Oct 2019 01:58:25 +0900 |
parents | 64ea7d12894c |
children | 797dd1369472 |
files | agda/puzzle.agda |
diffstat | 1 files changed, 117 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/puzzle.agda Mon Oct 28 01:58:25 2019 +0900 @@ -0,0 +1,117 @@ +module puzzle where + +---- 仮定 +-- 猫か犬を飼っている人は山羊を飼ってない +-- 猫を飼ってない人は、犬かウサギを飼っている +-- 猫も山羊も飼っていない人は、ウサギを飼っている +-- +---- 問題 +-- 山羊を飼っている人は、犬を飼っていない +-- 山羊を飼っている人は、ウサギを飼っている +-- ウサギを飼っていない人は、猫を飼っている + +module pet-research where + open import logic + open import Relation.Nullary + open import Data.Empty + + postulate + lem : (a : Set) → a ∨ ( ¬ a ) + + record PetResearch ( Cat Dog Goat Rabbit : Set ) : Set where + field + fact1 : ( Cat ∨ Dog ) → ¬ Goat + fact2 : ¬ Cat → ( Dog ∨ Rabbit ) + fact3 : ¬ ( Cat ∨ Goat ) → Rabbit + + module tmp ( Cat Dog Goat Rabbit : Set ) (p : PetResearch Cat Dog Goat Rabbit ) where + + open PetResearch + + problem0 : Cat ∨ Dog ∨ Goat ∨ Rabbit + problem0 with lem Cat | lem Goat + ... | case1 c | g = case1 c + ... | c | case1 g = case2 ( case2 ( case1 g ) ) + ... | case2 ¬c | case2 ¬g = case2 ( case2 ( case2 ( fact3 p lemma1 ))) where + lemma1 : ¬ ( Cat ∨ Goat ) + lemma1 (case1 c) = ¬c c + lemma1 (case2 g) = ¬g g + + problem1 : Goat → ¬ Dog + problem1 g d = ⊥-elim ( fact1 p (case2 d) g ) + + problem2 : Goat → Rabbit + problem2 g with lem Cat | lem Dog + problem2 g | case1 c | d = ⊥-elim ( fact1 p (case1 c ) g ) + problem2 g | case2 ¬c | case1 d = ⊥-elim ( fact1 p (case2 d ) g ) + problem2 g | case2 ¬c | case2 ¬d with fact3 p | lem Rabbit + ... | _ | case1 r = r + ... | f3 | case2 ¬r = f3 lemma2 where + lemma2 : Cat ∨ Goat → ⊥ + lemma2 (case1 c) = ¬c c + lemma2 (case2 g) with fact2 p ¬c + lemma2 (case2 g) | case1 d = ¬d d + lemma2 (case2 g) | case2 r = ¬r r + + problem3 : (¬ Rabbit ) → Cat + problem3 ¬r with lem Cat | lem Goat + problem3 ¬r | case1 c | g = c + problem3 ¬r | case2 ¬c | g = ⊥-elim ( ¬r ( fact3 p lemma3 )) where + lemma3 : ¬ ( Cat ∨ Goat ) + lemma3 (case1 c) = ¬c c + lemma3 (case2 g) with fact2 p ¬c + lemma3 (case2 g) | case1 d = fact1 p (case2 d ) g + lemma3 (case2 g) | case2 r = ¬r r + +module pet-research1 ( Cat Dog Goat Rabbit : Set ) where + + open import Data.Bool + open import Relation.Binary + open import Relation.Binary.PropositionalEquality + + _=>_ : Bool → Bool → Bool + _ => true = true + false => _ = true + true => false = false + + ¬_ : Bool → Bool + ¬ p = not p + + problem0 : ( Cat Dog Goat Rabbit : Bool ) → + ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) + => (Cat ∨ Dog ∨ Goat ∨ Rabbit) ≡ true + problem0 true d g r = refl + problem0 false true g r = refl + problem0 false false true r = refl + problem0 false false false true = refl + problem0 false false false false = refl + + problem1 : ( Cat Dog Goat Rabbit : Bool ) → + ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) + => ( Goat => ( ¬ Dog )) ≡ true + problem1 c false false r = refl + problem1 c true false r = refl + problem1 c false true r = refl + problem1 false true true r = refl + problem1 true true true r = refl + + problem2 : ( Cat Dog Goat Rabbit : Bool ) → + ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) + => ( Goat => Rabbit ) ≡ true + problem2 c d false false = refl + problem2 c d false true = refl + problem2 c d true true = refl + problem2 true d true false = refl + problem2 false false true false = refl + problem2 false true true false = refl + + problem3 : ( Cat Dog Goat Rabbit : Bool ) → + ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) + => ( (¬ Rabbit ) => Cat ) ≡ true + problem3 false d g true = refl + problem3 true d g true = refl + problem3 true d g false = refl + problem3 false false false false = refl + problem3 false false true false = refl + problem3 false true false false = refl + problem3 false true true false = refl