Mercurial > hg > Members > kono > Proof > automaton
changeset 285:6e85b8b0d8db
remove ls<n
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Dec 2021 00:28:29 +0900 |
parents | c9f20dec63ad |
children | f49c6d768e19 |
files | automaton-in-agda/src/fin.agda |
diffstat | 1 files changed, 27 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/fin.agda Mon Dec 27 21:45:00 2021 +0900 +++ b/automaton-in-agda/src/fin.agda Tue Dec 28 00:28:29 2021 +0900 @@ -153,27 +153,16 @@ ... | tri≈ ¬a b ¬c = list-less ls ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n i) c ) -record NList (n m : ℕ) (qs : List (Fin (suc n))) : Set where +record NList (n : ℕ) (qs : List (Fin (suc n))) : Set where field ls : List (Fin n) lseq : list-less qs ≡ ls - ls>n : m + length ls > n - fin-dup-in-list>n : {n : ℕ } → (qs : List (Fin n)) → (len> : length qs > n ) → FDup-in-list n qs fin-dup-in-list>n {zero} [] () fin-dup-in-list>n {zero} (() ∷ qs) lt fin-dup-in-list>n {suc n} qs lt = fdup-phase0 where open import Level using ( Level ) - mapleneq : {n : Level} {a b : Set n} { x : List a } {f : a → b} → length (map f x) ≡ length x - mapleneq {_} {_} {_} {[]} {f} = refl - mapleneq {_} {_} {_} {x ∷ x₁} {f} = cong suc (mapleneq {_} {_} {_} {x₁}) - lt-conv : {l : Level} {a : Set l} {m n : ℕ } ( qs : List a ) → m + suc ( length qs ) > n → suc m + length qs > n - lt-conv {_} {_} {m} {n} qs lt = begin - suc n ≤⟨ lt ⟩ - m + suc (length qs) ≡⟨ sym (+-assoc m 1 _) ⟩ - (m + 1) + length qs ≡⟨ cong (λ k → k + length qs) (+-comm m _ ) ⟩ - suc m + length qs ∎ where open ≤-Reasoning fdup+1 : (qs : List (Fin (suc n))) (i : Fin n) → fin-dup-in-list i (list-less qs) ≡ true → fin-dup-in-list (fin+1 i) qs ≡ true fdup+1 qs i p = f1-phase1 qs p where f1-phase2 : (qs : List (Fin (suc n)) ) → fin-phase2 i (list-less qs) ≡ true → fin-phase2 (fin+1 i) qs ≡ true @@ -187,31 +176,38 @@ ... | tri< a ¬b ¬c = f1-phase1 qs {!!} ... | tri≈ ¬a b ¬c = f1-phase2 qs {!!} ... | tri> ¬a ¬b c = f1-phase1 qs {!!} - fdup-phase2 : (qs : List (Fin (suc n)) ) → {m : ℕ} → m + length qs > n - → ( fin-phase2 (fromℕ< a<sa ) qs ≡ true ) ∨ NList n m qs - fdup-phase2 [] {m} lt = case2 record { ls = [] ; lseq = refl ; ls>n = lt } - fdup-phase2 (x ∷ qs) {m} lt with <-fcmp (fromℕ< a<sa) x + fdup-phase2 : (qs : List (Fin (suc n)) ) + → ( fin-phase2 (fromℕ< a<sa ) qs ≡ true ) ∨ NList n qs + fdup-phase2 [] = case2 record { ls = [] ; lseq = refl } + fdup-phase2 (x ∷ qs) with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k) (sym fin<asa) fin<n )) - fdup-phase2 (x ∷ qs) {m} lt | tri≈ ¬a b ¬c = case1 refl - fdup-phase2 (x ∷ qs) {m} lt | tri> ¬a ¬b c with fdup-phase2 qs {suc m} (lt-conv qs lt) + fdup-phase2 (x ∷ qs) | tri≈ ¬a b ¬c = case1 refl + fdup-phase2 (x ∷ qs) | tri> ¬a ¬b c with fdup-phase2 qs ... | case1 p = case1 p - ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = {!!} ; ls>n = {!!} } - fdup-phase1 : (qs : List (Fin (suc n)) ) → {m : ℕ} → m + length qs > n → (fin-phase1 (fromℕ< a<sa) qs ≡ true) ∨ NList n m qs - fdup-phase1 [] {m} lt = case2 record { ls = [] ; lseq = refl ; ls>n = lt } - fdup-phase1 (x ∷ qs) {m} lt with <-fcmp (fromℕ< a<sa) x - fdup-phase1 (x ∷ qs) {m} lt | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k) (sym fin<asa) fin<n )) - fdup-phase1 (x ∷ qs) {m} lt | tri≈ ¬a b ¬c with fdup-phase2 qs {m} ? + ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = fdup01 } where + fdup01 : list-less (x ∷ qs) ≡ x<y→fin-1 c ∷ NList.ls nlist + fdup01 with NatP.<-cmp (toℕ x) n + ... | tri< a ¬b ¬c = begin + fromℕ< a ∷ list-less qs ≡⟨ cong₂ (λ j k → j ∷ k ) (lemma10 refl) (NList.lseq nlist) ⟩ + fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa))) ∷ NList.ls nlist ∎ where open ≡-Reasoning + ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → toℕ x < k ) fin<asa c )) + ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n x) c ) + fdup-phase1 : (qs : List (Fin (suc n)) ) → (fin-phase1 (fromℕ< a<sa) qs ≡ true) ∨ NList n qs + fdup-phase1 [] = case2 record { ls = [] ; lseq = refl } + fdup-phase1 (x ∷ qs) with <-fcmp (fromℕ< a<sa) x + fdup-phase1 (x ∷ qs) | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k) (sym fin<asa) fin<n )) + fdup-phase1 (x ∷ qs) | tri≈ ¬a b ¬c with fdup-phase2 qs ... | case1 p = case1 p - ... | case2 nlist = case2 record { ls = NList.ls nlist ; lseq = {!!} ; ls>n = NList.ls>n nlist } - fdup-phase1 (x ∷ qs) {m} lt | tri> ¬a ¬b c with fdup-phase1 qs {m} {!!} + ... | case2 nlist = case2 record { ls = NList.ls nlist ; lseq = {!!} } where + fdup03 : list-less (x ∷ qs) ≡ NList.ls nlist + fdup03 = {!!} + fdup-phase1 (x ∷ qs) | tri> ¬a ¬b c with fdup-phase1 qs ... | case1 p = case1 p - ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = {!!} ; ls>n = {!!} } + ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = {!!} } fdup-phase0 : FDup-in-list (suc n) qs - fdup-phase0 with fdup-phase1 qs {0} ( <-trans a<sa lt ) + fdup-phase0 with fdup-phase1 qs ... | case1 dup = record { dup = fromℕ< a<sa ; is-dup = dup } ... | case2 nlist = record { dup = fin+1 (FDup-in-list.dup fdup) ; is-dup = fdup+1 qs (FDup-in-list.dup fdup) (FDup-in-list.is-dup fdup) } where - flt : length (list-less qs) > n - flt = subst ( λ k → length k > n ) (sym (NList.lseq nlist)) ( NList.ls>n nlist ) fdup : FDup-in-list n (list-less qs) - fdup = fin-dup-in-list>n (list-less qs) flt + fdup = fin-dup-in-list>n (list-less qs) {!!}