Mercurial > hg > Members > kono > Proof > automaton
changeset 279:797fdfe65c93
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Dec 2021 18:36:48 +0900 |
parents | e89957b99662 |
children | 681df12f0edc |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 33 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Sun Dec 26 12:38:37 2021 +0900 +++ b/automaton-in-agda/src/non-regular.agda Sun Dec 26 18:36:48 2021 +0900 @@ -69,28 +69,42 @@ tr-accept← {Q} {Σ} fa (x ∷ []) q ac = tnext (tend ac ) tr-accept← {Q} {Σ} fa (x ∷ x1 ∷ is) q ac = tnext (tr-accept← fa (x1 ∷ is) (δ fa q x) ac) +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -tr-append-is : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) (q : Q) (is : List Σ) ( qs : List Q ) - → memberQ finq q qs ≡ true - → Trace fa is (q ∷ qs) → List Σ ∧ List Q -tr-append-is {Q} {Σ} fa finq q [] [] () (tend x) -tr-append-is {Q} {Σ} fa finq q (x ∷ is) [] () tr -tr-append-is {Q} {Σ} fa finq q (x ∷ is) (q0 ∷ qs) mb tr with equal? finq q q0 -... | true = ⟪ x ∷ [] , q0 ∷ [] ⟫ -tr-append-is {Q} {Σ} fa finq q (x ∷ is) (.(δ fa q x) ∷ qs) mb (tnext tr) | false = tr3 (δ fa q x ∷ qs) tr2 is tr where - tr2 : memberQ finq q (δ fa q x ∷ qs) ≡ true - tr2 = {!!} - tr3 : (qs : List Q) → memberQ finq q qs ≡ true → (is : List Σ) → Trace fa is qs → List Σ ∧ List Q - tr3 (x ∷ []) mb [] (tend x₁) = {!!} - tr3 (q0 ∷ qs) mb (x₁ ∷ is) (tnext tr) with equal? finq q q0 - ... | true = ⟪ x ∷ [] , {!!} ⟫ - ... | false = ⟪ x ∷ proj1 (tr3 qs mb is tr) , {!!} ⟫ +record TA { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) {is : List Σ} { qs : List Q } (tr : Trace fa is qs) : Set where + field + x y z : List Σ + qx qy qz : List Q + trace0 : Trace fa (x ++ y ++ z) (qx ++ qy ++ qz) + trace1 : Trace fa (x ++ y ++ y ++ z) (qx ++ qy ++ qy ++ qz) + trace-eq : trace0 ≅ tr tr-append : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) (q : Q) (is : List Σ) ( qs : List Q ) - → (mb : memberQ finq q qs ≡ true ) - → (tr : Trace fa is ( q ∷ qs )) - → Trace fa (proj1 (tr-append-is fa finq q is qs mb tr) ++ is) (proj2 (tr-append-is fa finq q is qs mb tr) ++ (q ∷ qs)) -tr-append = {!!} + → dup-in-list finq q qs ≡ true + → (tr : Trace fa is qs ) → TA fa tr +tr-append {Q} {Σ} fa finq q is qs dup tr = tra-phase1 qs is tr dup where + tra-phase3 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → {!!} + → (qy : List Q) → (iy : List Σ) → (ty : Trace fa iy qy ) → phase2 finq q qy ≡ true → {!!} + → Trace fa (iy ++ is) (qy ++ qs) + tra-phase3 = {!!} + tra-phase2 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → phase2 finq q qs ≡ true + → (qy : List Q) → (iy : List Σ) → (ty : Trace fa iy qy ) → phase2 finq q qy ≡ true + → TA fa tr + tra-phase2 (q0 ∷ []) is (tend x₁) p qy iy ty py = {!!} + tra-phase2 (q0 ∷ (q₁ ∷ qs)) (x ∷ is) (tnext tr) p qy iy ty py with equal? finq q q0 + ... | true = {!!} + ... | false = {!!} where + tr1 : TA fa tr + tr1 = tra-phase2 (q₁ ∷ qs) is tr p qy iy ty py + tra-phase1 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → phase1 finq q qs ≡ true → TA fa tr + tra-phase1 (q0 ∷ []) is (tend x₁) p = {!!} + tra-phase1 (q0 ∷ (q₁ ∷ qs)) (x ∷ is) (tnext tr) p with equal? finq q q0 + ... | true = {!!} where + tr2 : TA fa tr + tr2 = tra-phase2 (q₁ ∷ qs) is tr p (q₁ ∷ qs) is tr p + ... | false = {!!} where + tr1 : TA fa tr + tr1 = tra-phase1 (q₁ ∷ qs) is tr p lemmaNN : (r : RegularLanguage In2 ) → ¬ ( (s : List In2) → isRegular inputnn1 s r ) lemmaNN r Rg = {!!}