Mercurial > hg > Members > kono > Proof > automaton
changeset 94:7c326a484103
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 Nov 2019 20:02:36 +0900 |
parents | cdf8ff15efc5 |
children | 86d390666078 |
files | agda/regular-language.agda |
diffstat | 1 files changed, 20 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Sun Nov 10 18:47:06 2019 +0900 +++ b/agda/regular-language.agda Sun Nov 10 20:02:36 2019 +0900 @@ -284,25 +284,33 @@ open Found lemma13 : (x : List Σ) → (nq : states A ∨ states B → Bool ) → Naccept NFA finab nq x ≡ true → (qa : states A ) → ( nq (case1 qa) ≡ true) - → ( fa : List Σ → Bool ) → split fa (contain B) x ≡ true - lemma13 [] nq fn qa qat fa = ? - lemma13 (h ∷ t) nq fn qa qat fa with fa [] | accept (automaton B) (δ (automaton B) (astart B) h) t - ... | true | true = refl - ... | false | _ = subst (λ k → false \/ k ≡ true ) (sym lemma14 ) (bool-or-1 refl) where - lemma14 : split (λ t1 → fa (h ∷ t1)) (accept (automaton B) (astart B)) t ≡ true - lemma14 = lemma13 t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) (nmove (case1 qa) nq qat h) (λ x → fa (h ∷ x)) - ... | _ | false = subst (λ k → (_ /\ false) \/ k ≡ true ) (sym lemma15) (bool-or-1 (bool-and-2 refl) ) where - lemma15 : split (λ t1 → fa (h ∷ t1)) (accept (automaton B) (astart B)) t ≡ true - lemma15 = lemma13 t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) (nmove (case1 qa) nq qat h) (λ x → fa (h ∷ x)) + → split (accept (automaton A) qa ) (contain B) x ≡ true + lemma13 [] nq fn qa qat = {!!} where + lemma11 : found-q (found← finab fn) ≡ case1 qa + lemma11 = ? + + -- = {!!} where -- with aend (automaton A) qa | aend (automaton B) (astart B) | found← finab fn + -- qe : states A ∨ states B + -- qe = found-q (found← finab fn) + -- lemma10 : nq qe /\ Nend NFA qe ≡ true + -- lemma10 = found-p (found← finab fn) + -- lemma11 : aend (automaton A) qa ≡ true + -- lemma11 with qe + -- lemma11 | case1 qa1 = bool-∧→tt-0 (bool-∧→tt-1 lemma10) + -- lemma11 | case2 qb1 = {!!} + lemma13 (h ∷ t) nq fn qa qat with aend (automaton A) qa | accept (automaton B) (δ (automaton B) (astart B) h) t + ... | true | true = refl + ... | _ | _ = subst (λ k → _ \/ k ≡ true ) (sym lemma14) bool-or-3 where + lemma14 : split (λ t1 → accept (automaton A) qa (h ∷ t1)) (contain B) t ≡ true + lemma14 = lemma13 t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) (nmove (case1 qa) nq qat h) lemma10 : Naccept NFA finab (equal? finab (case1 (astart A))) x ≡ true → split (contain A) (contain B) x ≡ true - lemma10 CC = lemma13 x (Concat-NFA-start A B ) CC (astart A) (equal?-refl finab) (accept (automaton A) (astart A)) + lemma10 CC = lemma13 x (Concat-NFA-start A B ) CC (astart A) (equal?-refl finab) closed-in-concat← : contain (M-Concat A B) x ≡ true → Concat (contain A) (contain B) x ≡ true closed-in-concat← C with subset-construction-lemma← finab NFA (case1 (astart A)) x C ... | CC = lemma10 CC - -- AB→split (accept (automaton A) {!!} ) (accept (automaton B) {!!} ) {!!} {!!} {!!} {!!}