Mercurial > hg > Members > kono > Proof > automaton
changeset 349:9f3647718a9f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Jul 2023 23:21:28 +0900 |
parents | 8cd5bea05150 |
children | ae38b5b3a6ec |
files | automaton-in-agda/src/finiteSetUtil.agda |
diffstat | 1 files changed, 16 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/finiteSetUtil.agda Mon Jul 17 22:34:17 2023 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Mon Jul 17 23:21:28 2023 +0900 @@ -625,9 +625,15 @@ lem09 0 (suc j) (s≤s le) eq with is-B (Q←F fa (fromℕ< {0} 0<fa )) | inspect count-B 0 ... | no nisb | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) ... | yes isb | record { eq = eq1 } with ≤-∨ (s≤s le) - ... | case1 eq2 = record { b = Is.a isb ; cb = 0 ; b=cn = ? ; cb=n = trans eq1 (sym (trans eq2 eq)) - ; cb-inject = λ cb1 iscb1 cb1eq → ?} - ... | case2 (s≤s lt) = ? + ... | case1 eq2 = record { b = Is.a isb ; cb = 0 ; b=cn = lem10 ; cb=n = trans eq1 (sym (trans eq2 eq)) + ; cb-inject = λ cb1 iscb1 cb1eq → ?} where + lem10 : 0 ≡ toℕ (F←Q fa (f (Is.a isb))) + lem10 = begin + 0 ≡⟨ sym ( toℕ-fromℕ< 0<fa ) ⟩ + toℕ (fromℕ< {0} 0<fa ) ≡⟨ cong toℕ (sym (finiso← fa _)) ⟩ + toℕ (F←Q fa (Q←F fa (fromℕ< {0} 0<fa ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩ + toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning + ... | case2 (s≤s lt) = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-transʳ z≤n lt) )) lem09 (suc i) (suc j) (s≤s le) eq with <-cmp (finite fa) i | inspect count-B (suc i) ... | tri< a ¬b ¬c | _ = lem09 i (suc j) (s≤s le) eq ... | tri≈ ¬a b ¬c | _ = lem09 i (suc j) (s≤s le) eq @@ -635,7 +641,13 @@ ... | no nisb = lem09 i (suc j) (s≤s le) eq ... | yes isb with ≤-∨ (s≤s le) ... | case1 eq2 = record { b = Is.a isb ; cb = suc i ; b=cn = ? ; cb=n = trans eq1 (sym (trans eq2 eq)) - ; cb-inject = λ cb1 iscb1 cb1eq → ?} + ; cb-inject = λ cb1 iscb1 cb1eq → ?} where + lem10 : suc i ≡ toℕ (F←Q fa (f (Is.a isb))) + lem10 = begin + suc i ≡⟨ cong suc (sym ( toℕ-fromℕ< c )) ⟩ + ? ≡⟨ ? ⟩ + toℕ (F←Q fa (Q←F fa (fromℕ< c ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩ + toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning ... | case2 (s≤s lt) = lem09 i j lt (cong pred eq) -- end