Mercurial > hg > Members > kono > Proof > automaton
changeset 350:ae38b5b3a6ec
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Jul 2023 23:59:32 +0900 |
parents | 9f3647718a9f |
children | c9a8d586695c |
files | automaton-in-agda/src/finiteSetUtil.agda |
diffstat | 1 files changed, 7 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/finiteSetUtil.agda Mon Jul 17 23:21:28 2023 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Mon Jul 17 23:59:32 2023 +0900 @@ -597,7 +597,7 @@ count-B zero with is-B (Q←F fa ( fromℕ< {0} 0<fa )) ... | yes isb = 1 ... | no nisb = 0 - count-B (suc n) with <-cmp (finite fa) n + count-B (suc n) with <-cmp (finite fa) (suc n) ... | tri< a ¬b ¬c = count-B n ... | tri≈ ¬a b ¬c = count-B n ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c)) @@ -634,18 +634,18 @@ toℕ (F←Q fa (Q←F fa (fromℕ< {0} 0<fa ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩ toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning ... | case2 (s≤s lt) = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-transʳ z≤n lt) )) - lem09 (suc i) (suc j) (s≤s le) eq with <-cmp (finite fa) i | inspect count-B (suc i) + lem09 (suc i) (suc j) (s≤s le) eq with <-cmp (finite fa) (suc i) | inspect count-B (suc i) ... | tri< a ¬b ¬c | _ = lem09 i (suc j) (s≤s le) eq ... | tri≈ ¬a b ¬c | _ = lem09 i (suc j) (s≤s le) eq ... | tri> ¬a ¬b c | record { eq = eq1 } with is-B (Q←F fa (fromℕ< c)) ... | no nisb = lem09 i (suc j) (s≤s le) eq ... | yes isb with ≤-∨ (s≤s le) - ... | case1 eq2 = record { b = Is.a isb ; cb = suc i ; b=cn = ? ; cb=n = trans eq1 (sym (trans eq2 eq)) + ... | case1 eq2 = record { b = Is.a isb ; cb = suc i ; b=cn = lem11 ; cb=n = trans eq1 (sym (trans eq2 eq )) ; cb-inject = λ cb1 iscb1 cb1eq → ?} where - lem10 : suc i ≡ toℕ (F←Q fa (f (Is.a isb))) - lem10 = begin - suc i ≡⟨ cong suc (sym ( toℕ-fromℕ< c )) ⟩ - ? ≡⟨ ? ⟩ + lem11 : suc i ≡ toℕ (F←Q fa (f (Is.a isb))) + lem11 = begin + suc i ≡⟨ sym ( toℕ-fromℕ< c) ⟩ + toℕ (fromℕ< c) ≡⟨ cong toℕ (sym (finiso← fa _)) ⟩ toℕ (F←Q fa (Q←F fa (fromℕ< c ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩ toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning ... | case2 (s≤s lt) = lem09 i j lt (cong pred eq)