Mercurial > hg > Members > kono > Proof > automaton
changeset 378:a933c8531141
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Jul 2023 13:32:46 +0900 |
parents | 4e1c5a9db11a |
children | 374eb9b42d95 |
files | automaton-in-agda/src/derive.agda |
diffstat | 1 files changed, 38 insertions(+), 43 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Mon Jul 24 13:05:18 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Mon Jul 24 13:32:46 2023 +0900 @@ -165,7 +165,7 @@ sub* : {x y : Regex Σ} → SB x y → SB (x *) y sub&1 : (x y z : Regex Σ) → SB x z → SB (x & y) z sub&2 : (x y z : Regex Σ) → SB y z → SB (x & y) z --- sub&< : (x y : Regex Σ) → rank x < rank y → SB y x → SB y (x & y) + sub&< : (x y : Regex Σ) → rank x < rank y → SB y x → SB y (x & y) record ISB (r : Regex Σ) : Set where field @@ -174,60 +174,55 @@ open import bijection using ( InjectiveF ; Is ) -regex∨ : {x y : Regex Σ} → Bijection (One ∨ ISB x ∨ ISB y) (ISB (x || y)) -regex∨ {x} {y} = record { fun← = ? ; fun→ = ? ; fiso← = ? ; fiso→ = ? } where - fb00 : ISB (x || y) → One ∨ ISB x ∨ ISB y - fb00 record { s = .(x || y) ; is-sub = sunit } = case1 one - fb00 record { s = s ; is-sub = sub|1 is-sub } = case2 (case1 record { s = s ; is-sub = is-sub } ) - fb00 record { s = s ; is-sub = sub|2 is-sub } = case2 (case2 record { s = s ; is-sub = is-sub } ) - -finSB : (r : Regex Σ) → FiniteSet (ISB r) -finSB ε = record { finite = 1 ; Q←F = λ _ → record { s = ε ; is-sub = sunit } ; F←Q = λ _ → # 0 ; finiso→ = fb00 ; finiso← = fin1≡0 } where - fb00 : (q : ISB ε) → record { s = ε ; is-sub = sunit } ≡ q - fb00 record { s = ε ; is-sub = sunit } = refl -finSB φ = ? -finSB (r *) = ? -finSB (x & y) = iso-fin (fin-∨1 (fin-∨ (finSB x) (finSB y))) ? -finSB (x || y) = iso-fin (fin-∨1 (fin-∨ (finSB x) (finSB y))) ? -finSB < x > = record { finite = 1 ; Q←F = λ _ → record { s = < x > ; is-sub = sunit } ; F←Q = λ _ → # 0 ; finiso→ = fb00 ; finiso← = fin1≡0 } where - fb00 : (q : ISB < x > ) → record { s = < x > ; is-sub = sunit } ≡ q - fb00 record { s = < x > ; is-sub = sunit } = refl +finISB2 : {r z : Regex Σ} → FiniteSet ( ISB z) → FiniteSet (SB r z) +finISB2 = ? -data ISBn (r : Regex Σ) : ( rs : Regex Σ ) → Set where - unit : (rs : ISB r ) → ISBn r (ISB.s rs) - next : (ys : Regex Σ) → (x : ISB r) → ISBn r ys → rank ys < rank (ISB.s x) → ISBn r (ys & ISB.s x) - -record CISB (r : Regex Σ) : Set where - field - rg : Regex Σ - isbn : ISBn r rg +finISB : (r : Regex Σ) → FiniteSet (ISB r) +finISB ε = record { finite = 1 ; Q←F = λ _ → record { s = ε ; is-sub = sunit } ; F←Q = λ _ → # 0 ; finiso→ = ? ; finiso← = fin1≡0 } where + fb00 : (q : ISB ε) → record { s = ε ; is-sub = sunit } ≡ q + fb00 record { s = .ε ; is-sub = sunit } = refl +finISB φ = ? +finISB < x > = ? +finISB (x || y) = iso-fin (fin-∨1 (fin-∨ (finISB x) (finISB y))) ? where + fb00 : ISB (x || y) → ? + fb00 record { s = .(x || y) ; is-sub = sunit } = ? + fb00 record { s = s ; is-sub = (sub|1 is-sub) } = ? + fb00 record { s = s ; is-sub = (sub|2 is-sub) } = ? + fb00 record { s = (z & (x || y)) ; is-sub = (sub&< z (x || y) lt is-sub) } = ? where + fb01 : FiniteSet (ISB z) + fb01 = finISB z +finISB (x & y) = ? where + fb00 : ISB (x & y) → ? + fb00 record { s = .(x & y) ; is-sub = sunit } = ? + fb00 record { s = s ; is-sub = (sub&1 .x .y .s is-sub) } = ? + fb00 record { s = s ; is-sub = (sub&2 .x .y .s is-sub) } = ? + fb00 record { s = (z & (x & y)) ; is-sub = (sub&< z (x & y) lt is-sub) } = ? where + fb01 : FiniteSet (ISB z) + fb01 = finISB z +finISB (x *) = ? where + fb00 : ISB (x *) → ? + fb00 record { s = .(x *) ; is-sub = sunit } = ? + fb00 record { s = s ; is-sub = (sub* is-sub) } = ? + fb00 record { s = (z & (x *)) ; is-sub = (sub&< z (x *) lt is-sub) } = ? where + fb01 : FiniteSet (ISB z) + fb01 = finISB z -finCISB : (r : Regex Σ) → FiniteSet (CISB r) -finCISB ε = record { finite = 1 ; Q←F = λ _ → ? ; F←Q = λ _ → # 0 ; finiso→ = ? ; finiso← = fin1≡0 } where -finCISB φ = ? -finCISB < x > = ? -finCISB (r *) = ? -finCISB (x || y) = iso-fin (fin-∨1 (fin-∨ (finCISB x) (finCISB y))) record { fun← = ? ; fun→ = ? ; fiso← = ? ; fiso→ = ? } where - fb00 : CISB (x || y) → One ∨ CISB x ∨ CISB y - fb00 record { rg = rg ; isbn = isbn } = ? -finCISB (r & r₁) = ? - -toSB : (r : Regex Σ) → CISB r → Bool +toSB : (r : Regex Σ) → ISB r → Bool toSB r cr = ? -sbempty? : (r : Regex Σ) → (CISB r → Bool) → Bool +sbempty? : (r : Regex Σ) → (ISB r → Bool) → Bool sbempty? r = ? -sbderive : (r : Regex Σ) → (CISB r → Bool) → Σ → CISB r → Bool +sbderive : (r : Regex Σ) → (ISB r → Bool) → Σ → ISB r → Bool sbderive = ? -- finDerive : (r : Regex Σ) → FiniteSet (Derived r) -- this is not correct because it contains s || s || s || ..... -finSBTA : (r : Regex Σ) → FiniteSet (CISB r → Bool) -finSBTA r = fin→ ( finCISB r ) +finSBTA : (r : Regex Σ) → FiniteSet (ISB r → Bool) +finSBTA r = fin→ ( finISB r ) -regex→automaton1 : (r : Regex Σ) → Automaton (CISB r → Bool) Σ +regex→automaton1 : (r : Regex Σ) → Automaton (ISB r → Bool) Σ regex→automaton1 r = record { δ = sbderive r ; aend = sbempty? r } regex-match1 : (r : Regex Σ) → (List Σ) → Bool