Mercurial > hg > Members > kono > Proof > automaton
changeset 390:b49d1f03faf9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Jul 2023 07:17:09 +0900 |
parents | 5264070ddd2d |
children | 0d8b093bc4e3 |
files | automaton-in-agda/src/non-regular.agda |
diffstat | 1 files changed, 12 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/non-regular.agda Thu Jul 27 06:49:54 2023 +0900 +++ b/automaton-in-agda/src/non-regular.agda Thu Jul 27 07:17:09 2023 +0900 @@ -232,17 +232,23 @@ a b : List In2 i10 : z ≡ a ++ (i1 ∷ i0 ∷ b ) nn12 : (x : List In2 ) → inputnn1 x ≡ true → ¬ i1i0 x - nn12 x eq = nn18 x (nn17 x eq) eq where - nn17 : (x : List In2 ) → inputnn1-i1 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x)) ≡ true → ¬ i1i0 (proj2 (inputnn1-i0 0 x)) - nn17 [] eq li with i1i0.a li | i1i0.i10 li + nn12 x eq = nn18 x (nn17 x 0 eq) eq where + nn17 : (x : List In2 ) → (i : ℕ) + → inputnn1-i1 (proj1 (inputnn1-i0 i x)) (proj2 (inputnn1-i0 i x)) ≡ true → ¬ i1i0 (proj2 (inputnn1-i0 i x)) + nn17 [] i eq li with i1i0.a li | i1i0.i10 li ... | [] | () ... | x ∷ s | () - nn17 (i0 ∷ x₁) eq li = nn17 x₁ ? (subst (λ k → i1i0 k) (nn30 x₁ 0 ) li ) - nn17 (i1 ∷ x₁) () li + nn17 (i0 ∷ x₁) i eq li = nn17 x₁ i (nn19 eq) (subst (λ k → i1i0 k) (nn30 x₁ i ) li ) where + nn19 : inputnn1-i1 (proj1 (inputnn1-i0 (suc i) x₁)) (proj2 (inputnn1-i0 (suc i) x₁)) ≡ true → + inputnn1-i1 (proj1 (inputnn1-i0 i x₁)) (proj2 (inputnn1-i0 i x₁)) ≡ true + nn19 = ? + -- nn17 x₁ (subst (λ k → inputnn1-i1 (proj1 (inputnn1-i0 1 x₁)) k ≡ true) (nn30 x₁ 0) eq ) + -- (subst (λ k → i1i0 k) (nn30 x₁ 0 ) li ) + nn17 (i1 ∷ x₁) i () li nn18 : (x : List In2 ) → ¬ i1i0 (proj2 (inputnn1-i0 0 x)) → inputnn1-i1 (proj1 (inputnn1-i0 0 x)) (proj2 (inputnn1-i0 0 x)) ≡ true → ¬ i1i0 x nn18 [] not eq = not - nn18 (i0 ∷ x₁) not eq li = nn18 x₁ ? ? record { a = [] ; b = ? ; i10 = ? } + nn18 (i0 ∷ x₁) not eq li = nn18 (i1 ∷ i0 ∷ x₁) ? ? record { a = [] ; b = x₁ ; i10 = ? } nn11 : (x y z : List In2 ) → ¬ y ≡ [] → inputnn1 (x ++ y ++ z) ≡ true → ¬ ( inputnn1 (x ++ y ++ y ++ z) ≡ true ) nn11 x y z ny xyz xyyz = ⊥-elim ( nn12 (x ++ y ++ y ++ z ) xyyz record { a = x ++ i1i0.a (bb23 bb22 ) ; b = i1i0.b (bb23 bb22) ++ z ; i10 = bb24 } ) where