Mercurial > hg > Members > kono > Proof > automaton
changeset 354:bc2cb1c6bc80
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 18 Jul 2023 10:48:40 +0900 |
parents | 5aae7a429f37 |
children | e7a7cab74ca1 |
files | automaton-in-agda/src/finiteSetUtil.agda |
diffstat | 1 files changed, 9 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/finiteSetUtil.agda Tue Jul 18 09:44:10 2023 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Tue Jul 18 10:48:40 2023 +0900 @@ -645,8 +645,15 @@ lem31 b = lem32 (toℕ (F←Q fa (f b))) refl where lem32 : (i : ℕ) → i ≡ toℕ (F←Q fa (f b)) → 0 < count-B i lem32 zero eq with is-B (Q←F fa ( fromℕ< {0} 0<fa )) - ... | yes isb = ? - ... | no nisb = ? + ... | yes isb = ≤-refl + ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = lem33 } ) where + lem33 : f b ≡ Q←F fa ( fromℕ< {0} 0<fa ) + lem33 = begin + f b ≡⟨ ? ⟩ + Q←F fa ( F←Q fa (f b)) ≡⟨ sym (cong (λ k → Q←F fa k) ( fromℕ<-toℕ _ ?)) ⟩ + Q←F fa ( fromℕ< ? ) ≡⟨ ? ⟩ + Q←F fa ( fromℕ< {0} 0<fa ) ∎ where + open ≡-Reasoning lem32 (suc n) eq with <-cmp (finite fa) (suc n) ... | tri< a ¬b ¬c = ? ... | tri≈ ¬a b ¬c = ?