Mercurial > hg > Members > kono > Proof > automaton
changeset 93:cdf8ff15efc5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 Nov 2019 18:47:06 +0900 |
parents | b1bc0802d774 |
children | 7c326a484103 |
files | agda/logic.agda agda/regular-language.agda |
diffstat | 2 files changed, 10 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/logic.agda Sun Nov 10 18:07:50 2019 +0900 +++ b/agda/logic.agda Sun Nov 10 18:47:06 2019 +0900 @@ -110,6 +110,15 @@ bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true bool-and-tt refl refl = refl +bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true +bool-∧→tt-0 {true} {true} refl = refl +bool-∧→tt-0 {false} {_} () + +bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true +bool-∧→tt-1 {true} {true} refl = refl +bool-∧→tt-1 {true} {false} () +bool-∧→tt-1 {false} {false} () + bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b bool-or-1 {false} {true} refl = refl bool-or-1 {false} {false} refl = refl
--- a/agda/regular-language.agda Sun Nov 10 18:07:50 2019 +0900 +++ b/agda/regular-language.agda Sun Nov 10 18:47:06 2019 +0900 @@ -285,11 +285,7 @@ lemma13 : (x : List Σ) → (nq : states A ∨ states B → Bool ) → Naccept NFA finab nq x ≡ true → (qa : states A ) → ( nq (case1 qa) ≡ true) → ( fa : List Σ → Bool ) → split fa (contain B) x ≡ true - lemma13 [] nq fn qa qat fa with found← finab fn - ... | S = {!!} where - lemma16 : nq (found-q S) /\ Concat-NFA.nend A B (found-q S) ≡ true - lemma16 = found-p S - -- = AB→split fa (contain B) [] [] {!!} {!!} + lemma13 [] nq fn qa qat fa = ? lemma13 (h ∷ t) nq fn qa qat fa with fa [] | accept (automaton B) (δ (automaton B) (astart B) h) t ... | true | true = refl ... | false | _ = subst (λ k → false \/ k ≡ true ) (sym lemma14 ) (bool-or-1 refl) where