Mercurial > hg > Members > kono > Proof > automaton
changeset 239:d475257ffe30
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 28 Jun 2021 10:22:46 +0900 (2021-06-28) |
parents | 3aad251b8d8b |
children | ec404f567e51 |
files | automaton-in-agda/src/gcd.agda |
diffstat | 1 files changed, 28 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Mon Jun 28 09:30:41 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Mon Jun 28 10:22:46 2021 +0900 @@ -536,6 +536,29 @@ ge3 : {a b c d : ℕ } → b > a → b - a ≡ d - c → d > c ge3 {a} {b} {c} {d} b>a eq = minus>0→x<y (subst (λ k → 0 < k ) eq (minus>0 b>a)) +ge00 : ( i0 j j0 ea eb : ℕ ) + → ( di : GCD 0 (suc i0) (suc (suc j)) j0 ) + → (ea + eb * (Dividable.factor (GCD.div-i di))) * suc i0 > eb * j0 + → (((ea + eb * (Dividable.factor (GCD.div-i di))) * suc i0) - (eb * j0)) ≡ (ea * suc i0) - (eb * suc (suc j)) +ge00 i0 j j0 ea eb di lt = ge1 where + f = Dividable.factor (GCD.div-i di) + ge4 : suc (j0 + 0) > suc (suc j) + ge4 = subst (λ k → k > suc (suc j)) (+-comm 0 _ ) ( s≤s (GCD.j<j0 di )) + ge1 : ((ea + eb * f) * suc i0) - (eb * j0) ≡ (ea * suc i0) - (eb * suc (suc j)) + ge1 = begin + ((ea + eb * f ) * suc i0) - (eb * j0) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * k)) (+-comm 0 _) ⟩ + ((ea + eb * f ) * suc i0) - (eb * (j0 + 0) ) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * k)) (sym (minus+n {j0 + 0} {suc (suc j)} ge4 )) ⟩ + ((ea + eb * f ) * suc i0) - (eb * (((j0 + 0) - suc (suc j)) + suc (suc j) )) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * k)) (+-comm _ (suc (suc j)) ) ⟩ + ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + ((j0 + 0) - suc (suc j)))) + ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + k) )) (sym (Dividable.is-factor (GCD.div-i di))) ⟩ + ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + (f * suc i0 + 0) )) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + k))) (+-comm _ 0) ⟩ + ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + (f * suc i0 ) )) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - k) (*-distribˡ-+ eb (suc (suc j)) (f * suc i0)) ⟩ + ((ea + eb * f ) * suc i0) - (eb * suc (suc j) + eb * (f * suc i0)) ≡⟨ cong (λ k → k - (eb * suc (suc j) + eb * (f * suc i0))) (*-distribʳ-+ (suc i0) ea _) ⟩ + (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + (eb * (f * (suc i0))) ) + ≡⟨ cong (λ k → (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + k )) (sym (*-assoc eb _ _ )) ⟩ + (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + ((eb * f) * (suc i0)) ) ≡⟨ minus+xy-zy {ea * suc i0} {(eb * f ) * suc i0} {eb * suc (suc j)} ⟩ + (ea * suc i0) - (eb * suc (suc j)) ∎ where open ≡-Reasoning + gcd-equlid1 : ( i i0 j j0 : ℕ ) → GCD i i0 j j0 → Equlid i0 j0 (gcd1 i i0 j j0) gcd-equlid1 zero i0 zero j0 di with <-cmp i0 j0 ... | tri< a' ¬b ¬c = record { eqa = 1 ; eqb = 0 ; is-equ< = {!!} ; is-equ> = {!!} } @@ -544,30 +567,14 @@ gcd-equlid1 zero i0 (suc zero) j0 di = record { eqa = 1 ; eqb = 1 ; is-equ< = {!!} ; is-equ> = {!!} } gcd-equlid1 zero zero (suc (suc j)) j0 di = record { eqa = 0 ; eqb = 1 ; is-equ< = {!!} ; is-equ> = {!!} } gcd-equlid1 zero (suc i0) (suc (suc j)) j0 di with gcd-equlid1 i0 (suc i0) (suc j) (suc (suc j)) ( gcd-next1 di ) -... | e = record { eqa = ea + eb * f ; eqb = eb ; is-equ< = ge0 ; is-equ> = {!!} } where +... | e = record { eqa = ea + eb * f ; eqb = eb + ; is-equ< = λ lt → subst (λ k → ((ea + eb * f) * suc i0) - (eb * j0) ≡ k ) (Equlid.is-equ< e (ge3 lt (ge1 lt))) (ge1 lt) ; is-equ> = {!!} } where ea = Equlid.eqa e eb = Equlid.eqb e f = Dividable.factor (GCD.div-i di) - ge4 : suc (j0 + 0) > suc (suc j) - ge4 = subst (λ k → k > suc (suc j)) (+-comm 0 _ ) ( s≤s (GCD.j<j0 di)) - ge0 : (ea + eb * f) * suc i0 > eb * j0 → (((ea + eb * f) * suc i0) - (eb * j0)) ≡ gcd1 i0 (suc i0) (suc j) (suc (suc j)) - ge0 lt = subst (λ k → ((ea + eb * f) * suc i0) - (eb * j0) ≡ k ) (Equlid.is-equ< e ge2 ) ge1 where - ge1 : ((ea + eb * f) * suc i0) - (eb * j0) ≡ (ea * suc i0) - (eb * suc (suc j)) - ge1 = begin - ((ea + eb * f ) * suc i0) - (eb * j0) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * k)) (+-comm 0 _) ⟩ - ((ea + eb * f ) * suc i0) - (eb * (j0 + 0) ) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * k)) (sym (minus+n {j0 + 0} {suc (suc j)} ge4 )) ⟩ - ((ea + eb * f ) * suc i0) - (eb * (((j0 + 0) - suc (suc j)) + suc (suc j) )) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * k)) (+-comm _ (suc (suc j)) ) ⟩ - ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + ((j0 + 0) - suc (suc j)))) - ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + k) )) (sym (Dividable.is-factor (GCD.div-i di))) ⟩ - ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + (f * suc i0 + 0) )) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + k))) (+-comm _ 0) ⟩ - ((ea + eb * f ) * suc i0) - (eb * (suc (suc j) + (f * suc i0 ) )) ≡⟨ cong (λ k → ((ea + eb * f ) * suc i0) - k) (*-distribˡ-+ eb (suc (suc j)) (f * suc i0)) ⟩ - ((ea + eb * f ) * suc i0) - (eb * suc (suc j) + eb * (f * suc i0)) ≡⟨ cong (λ k → k - (eb * suc (suc j) + eb * (f * suc i0))) (*-distribʳ-+ (suc i0) ea _) ⟩ - (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + (eb * (f * (suc i0))) ) - ≡⟨ cong (λ k → (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + k )) (sym (*-assoc eb _ _ )) ⟩ - (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + ((eb * f) * (suc i0)) ) ≡⟨ minus+xy-zy {ea * suc i0} {(eb * f ) * suc i0} {eb * suc (suc j)} ⟩ - (ea * suc i0) - (eb * suc (suc j)) ∎ where open ≡-Reasoning - ge2 : ea * suc i0 > eb * suc (suc j) - ge2 = ge3 lt ge1 + ge1 : (ea + eb * Dividable.factor (GCD.div-i di)) * suc i0 > eb * j0 → ((ea + eb * f) * suc i0) - (eb * j0) ≡ (ea * suc i0) - (eb * suc (suc j)) + ge1 lt = ge00 i0 j j0 ea eb di lt + gcd-equlid1 (suc zero) i0 zero j0 di = {!!} gcd-equlid1 (suc (suc i)) i0 zero zero di = {!!} gcd-equlid1 (suc (suc i)) i0 zero (suc j0) di with gcd-equlid1 (suc i) (suc (suc i)) j0 (suc j0) (GCD-sym (gcd-next1 (GCD-sym di)))