Mercurial > hg > Members > kono > Proof > automaton
changeset 288:e4b910112fdf
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Dec 2021 12:38:16 +0900 |
parents | ce16779e72a5 |
children | c9802aa2a8c9 |
files | automaton-in-agda/src/fin.agda |
diffstat | 1 files changed, 32 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/fin.agda Tue Dec 28 03:17:29 2021 +0900 +++ b/automaton-in-agda/src/fin.agda Tue Dec 28 12:38:16 2021 +0900 @@ -148,10 +148,10 @@ list-less : {n : ℕ } → List (Fin (suc n)) → List (Fin n) list-less [] = [] -list-less {n} (i ∷ ls) with NatP.<-cmp (toℕ i) n -... | tri< a ¬b ¬c = fromℕ< a ∷ list-less ls +list-less {n} (i ∷ ls) with <-fcmp (fromℕ< a<sa) i +... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ i < suc k ) (sym fin<asa) (fin≤n _ ))) ... | tri≈ ¬a b ¬c = list-less ls -... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n i) c ) +... | tri> ¬a ¬b c = x<y→fin-1 c ∷ list-less ls record NList (n : ℕ) (qs : List (Fin (suc n))) : Set where field @@ -167,21 +167,29 @@ fdup+1 : (qs : List (Fin (suc n))) (i : Fin n) → fin-dup-in-list i (list-less qs) ≡ true → FDup-in-list (suc n) qs fdup+1 qs i p with fin-dup-in-list (fromℕ< a<sa ) qs | inspect (fin-dup-in-list (fromℕ< a<sa )) qs ... | true | record {eq = eq } = record { dup = fromℕ< a<sa ; is-dup = eq } - ... | false | record {eq = ne } = f1-phase1 qs p where - f1-phase2 : (qs : List (Fin (suc n)) ) → fin-phase2 i (list-less qs) ≡ true → {!!} - f1-phase2 (x ∷ qs) p with <-fcmp (fin+1 i) x - f1-phase2 (x ∷ qs) p | tri< a ¬b ¬c with NatP.<-cmp (toℕ x) n - ... | tri< a₁ ¬b₁ ¬c₁ = f1-phase2 qs {!!} - ... | tri≈ ¬a b ¬c₁ = f1-phase2 qs {!!} - ... | tri> ¬a ¬b₁ c = {!!} -- ⊥-elim ( nat-<> fin<n c ) - f1-phase2 (x ∷ qs) p | tri≈ ¬a b ¬c = refl - f1-phase2 (x ∷ qs) p | tri> ¬a ¬b c = f1-phase2 qs {!!} - f1-phase1 : (qs : List (Fin (suc n)) ) → fin-phase1 i (list-less qs) ≡ true → {!!} - f1-phase1 [] () - f1-phase1 (x ∷ qs) p with <-fcmp (fin+1 i) x - ... | tri< a ¬b ¬c = f1-phase1 qs {!!} - ... | tri≈ ¬a b ¬c = f1-phase2 qs {!!} - ... | tri> ¬a ¬b c = f1-phase1 qs {!!} + ... | false | record {eq = ne } = record { dup = fin+1 i ; is-dup = f1-phase1 qs p (case1 ne) } where + f1-phase2 : (qs : List (Fin (suc n)) ) → fin-phase2 i (list-less qs) ≡ true + → (fin-phase1 (fromℕ< a<sa) qs ≡ false ) ∨ (fin-phase2 (fromℕ< a<sa) qs ≡ false) + → fin-phase2 (fin+1 i) qs ≡ true + f1-phase2 (x ∷ qs) p (case1 q1) with <-fcmp (fromℕ< a<sa) x + ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) + ... | tri≈ ¬a b ¬c = {!!} + f1-phase2 (x ∷ qs) p (case1 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x + ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase2 qs p (case1 q1) + ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁ = {!!} + ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = {!!} + ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁ = {!!} + ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = refl + ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = {!!} + ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = {!!} + ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = {!!} + ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ = f1-phase2 qs p (case1 q1) + f1-phase2 (x ∷ qs) p (case2 q2) = {!!} + f1-phase1 : (qs : List (Fin (suc n)) ) → fin-phase1 i (list-less qs) ≡ true + → (fin-phase1 (fromℕ< a<sa) qs ≡ false ) ∨ (fin-phase2 (fromℕ< a<sa) qs ≡ false) + → fin-phase1 (fin+1 i) qs ≡ true + f1-phase1 (x ∷ qs) p (case1 q1) = {!!} + f1-phase1 (x ∷ qs) p (case2 q2) = {!!} fdup-phase2 : (qs : List (Fin (suc n)) ) → ( fin-phase2 (fromℕ< a<sa ) qs ≡ true ) ∨ NList n qs fdup-phase2 [] = case2 record { ls = [] ; lseq = refl ; ls< = case1 refl } @@ -192,12 +200,12 @@ ... | case1 p = case1 p ... | case2 nlist = case2 record { ls = x<y→fin-1 c ∷ NList.ls nlist ; lseq = fdup01 ; ls< = case1 {!!} } where fdup01 : list-less (x ∷ qs) ≡ x<y→fin-1 c ∷ NList.ls nlist - fdup01 with NatP.<-cmp (toℕ x) n - ... | tri< a ¬b ¬c = begin - fromℕ< a ∷ list-less qs ≡⟨ cong₂ (λ j k → j ∷ k ) (lemma10 refl) (NList.lseq nlist) ⟩ - fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa))) ∷ NList.ls nlist ∎ where open ≡-Reasoning - ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → toℕ x < k ) fin<asa c )) - ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n x) c ) + fdup01 with <-fcmp (fromℕ< a<sa) x + ... | tri< a ¬b ¬c = {!!} -- begin + -- fromℕ< a ∷ list-less qs ≡⟨ cong₂ (λ j k → j ∷ k ) (lemma10 refl) (NList.lseq nlist) ⟩ + -- fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa))) ∷ NList.ls nlist ∎ where open ≡-Reasoning + ... | tri≈ ¬a b ¬c = {!!} -- ⊥-elim ( nat-≡< b (subst (λ k → toℕ x < k ) fin<asa c )) + ... | tri> ¬a ¬b c = {!!} -- ⊥-elim ( nat-≤> (fin≤n x) c ) fdup-phase1 : (qs : List (Fin (suc n)) ) → (fin-phase1 (fromℕ< a<sa) qs ≡ true) ∨ NList n qs fdup-phase1 [] = case2 record { ls = [] ; lseq = refl ; ls< = case1 refl } fdup-phase1 (x ∷ qs) with <-fcmp (fromℕ< a<sa) x