Mercurial > hg > Members > kono > Proof > automaton
changeset 283:e5a0499e7b40
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Dec 2021 19:48:00 +0900 |
parents | 80276659bb18 |
children | c9f20dec63ad |
files | automaton-in-agda/src/fin.agda automaton-in-agda/src/finiteSetUtil.agda |
diffstat | 2 files changed, 109 insertions(+), 88 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/fin.agda Mon Dec 27 12:45:14 2021 +0900 +++ b/automaton-in-agda/src/fin.agda Mon Dec 27 19:48:00 2021 +0900 @@ -2,8 +2,8 @@ module fin where -open import Data.Fin hiding (_<_ ; _≤_ ; _>_ ) -open import Data.Fin.Properties hiding ( <-trans ) +open import Data.Fin hiding (_<_ ; _≤_ ; _>_ ; _+_ ) +open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ) renaming ( <-cmp to <-fcmp ) open import Data.Nat open import logic open import nat @@ -87,7 +87,6 @@ lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = cong suc ( lemma12 {n} {m} n<m f refl ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -open import Data.Fin.Properties -- <-irrelevant <-nat=irr : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n @@ -114,3 +113,85 @@ ∎ where open ≡-Reasoning +open import Data.List +open import Relation.Binary.Definitions + +fin-phase2 : { n : ℕ } (q : Fin n) (qs : List (Fin n) ) → Bool +fin-phase2 q [] = false +fin-phase2 q (x ∷ qs) with <-fcmp q x +... | tri< a ¬b ¬c = fin-phase2 q qs +... | tri≈ ¬a b ¬c = true +... | tri> ¬a ¬b c = fin-phase2 q qs +fin-phase1 : { n : ℕ } (q : Fin n) (qs : List (Fin n) ) → Bool +fin-phase1 q [] = false +fin-phase1 q (x ∷ qs) with <-fcmp q x +... | tri< a ¬b ¬c = fin-phase1 q qs +... | tri≈ ¬a b ¬c = fin-phase2 q qs +... | tri> ¬a ¬b c = fin-phase1 q qs + +fin-dup-in-list : { n : ℕ} (q : Fin n) (qs : List (Fin n) ) → Bool +fin-dup-in-list {n} q qs = fin-phase1 q qs + +record FDup-in-list (n : ℕ ) (qs : List (Fin n)) : Set where + field + dup : Fin n + is-dup : fin-dup-in-list dup qs ≡ true + +list-less : {n : ℕ } → List (Fin (suc n)) → List (Fin n) +list-less [] = [] +list-less {n} (i ∷ ls) with NatP.<-cmp (toℕ i) n +... | tri< a ¬b ¬c = fromℕ< a ∷ list-less ls +... | tri≈ ¬a b ¬c = list-less ls +... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (fin≤n i) c ) + +record NList (n m : ℕ) (qs : List (Fin (suc n))) : Set where + field + ls : List (Fin n) + lseq : list-less qs ≡ ls + ls>n : m + length ls > n + +fin-dup-in-list>n : {n : ℕ } → (qs : List (Fin n)) → (len> : length qs > n ) → FDup-in-list n qs +fin-dup-in-list>n {zero} [] () +fin-dup-in-list>n {zero} (() ∷ qs) lt +fin-dup-in-list>n {suc n} qs lt = fdup-phase0 where + fdup+1 : (qs : List (Fin (suc n))) (i : Fin n) → fin-dup-in-list i (list-less qs) ≡ true → fin-dup-in-list (fin+1 i) qs ≡ true + fdup+1 qs i p = f1-phase1 qs p where + f1-phase2 : (qs : List (Fin (suc n)) ) → fin-phase2 i (list-less qs) ≡ true → fin-phase2 (fin+1 i) qs ≡ true + f1-phase2 (x ∷ qs) p with <-fcmp (fin+1 i) x + ... | tri< a ¬b ¬c = f1-phase2 qs {!!} -- fin-phase2 i (list-less (x ∷ qs)) ≡ true + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b c = f1-phase2 qs {!!} + f1-phase1 : (qs : List (Fin (suc n)) ) → fin-phase1 i (list-less qs) ≡ true → fin-phase1 (fin+1 i) qs ≡ true + f1-phase1 [] () + f1-phase1 (x ∷ qs) p with <-fcmp (fin+1 i) x + ... | tri< a ¬b ¬c = f1-phase1 qs {!!} + ... | tri≈ ¬a b ¬c = f1-phase2 qs {!!} + ... | tri> ¬a ¬b c = f1-phase1 qs {!!} + fdup-phase2 : (qs : List (Fin (suc n)) ) → {m : ℕ} → m + length qs > n + → ( fin-phase2 (fromℕ< a<sa ) qs ≡ true ) ∨ NList n m qs + fdup-phase2 [] {m} lt = case2 record { ls = [] ; lseq = refl ; ls>n = lt } + fdup-phase2 (x ∷ qs) {m} lt with <-fcmp (fromℕ< a<sa) x + ... | tri< a ¬b ¬c = {!!} + fdup-phase2 (x ∷ qs) {m} lt | tri≈ ¬a b ¬c = case1 refl + fdup-phase2 (x ∷ qs) {m} lt | tri> ¬a ¬b c with fdup-phase2 qs {suc m} {!!} + ... | case1 p = case1 p + ... | case2 nlist = case2 record { ls = {!!} ∷ NList.ls nlist ; lseq = {!!} ; ls>n = {!!} } + fdup-phase1 : (qs : List (Fin (suc n)) ) → {m : ℕ} → m + length qs > n → (fin-phase1 (fromℕ< a<sa) qs ≡ true) ∨ NList n m qs + fdup-phase1 [] {m} lt = case2 record { ls = [] ; lseq = refl ; ls>n = lt } + fdup-phase1 (x ∷ qs) {m} lt with <-fcmp (fromℕ< a<sa) x + fdup-phase1 (x ∷ qs) {m} lt | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a {!!} ) + fdup-phase1 (x ∷ qs) {m} lt | tri≈ ¬a b ¬c with fdup-phase2 qs {m} {!!} + ... | case1 p = case1 p + ... | case2 nlist = case2 record { ls = {!!} ∷ NList.ls nlist ; lseq = {!!} ; ls>n = {!!} } + fdup-phase1 (x ∷ qs) {m} lt | tri> ¬a ¬b c with fdup-phase1 qs {m} {!!} + ... | case1 p = case1 p + ... | case2 nlist = case2 record { ls = {!!} ∷ NList.ls nlist ; lseq = {!!} ; ls>n = {!!} } + fdup-phase0 : FDup-in-list (suc n) qs + fdup-phase0 with fdup-phase1 qs {0} ( <-trans a<sa lt ) + ... | case1 dup = record { dup = fromℕ< a<sa ; is-dup = dup } + ... | case2 nlist = record { dup = fin+1 (FDup-in-list.dup fdup) + ; is-dup = fdup+1 qs (FDup-in-list.dup fdup) (FDup-in-list.is-dup fdup) } where + flt : length (list-less qs) > n + flt = subst ( λ k → length k > n ) (sym (NList.lseq nlist)) ( NList.ls>n nlist ) + fdup : FDup-in-list n (list-less qs) + fdup = fin-dup-in-list>n (list-less qs) flt
--- a/automaton-in-agda/src/finiteSetUtil.agda Mon Dec 27 12:45:14 2021 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Mon Dec 27 19:48:00 2021 +0900 @@ -4,7 +4,7 @@ open import Data.Nat hiding ( _≟_ ) open import Data.Fin renaming ( _<_ to _<<_ ; _>_ to _f>_ ; _≟_ to _f≟_ ) hiding (_≤_ ) -open import Data.Fin.Properties +open import Data.Fin.Properties hiding ( <-trans ) renaming ( <-cmp to <-fcmp ) open import Data.Empty open import Relation.Nullary open import Relation.Binary.Definitions @@ -508,98 +508,38 @@ dup-in-list : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool dup-in-list {Q} finq q qs = phase1 finq q qs - -dup-in-list+1 : { Q : Set } (finq : FiniteSet Q) - → (q : Q) (qs : List Q ) → dup-in-list finq q qs ≡ true - → dup-in-list (fin-∨1 finq) (case2 q) (map case2 qs ) ≡ true -dup-in-list+1 {Q} finq q qs p = 1-phase1 qs p where - dup04 : {q x : Q} → equal? finq q x ≡ equal? (fin-∨1 finq) (case2 q) (case2 x) - dup04 {q} {x} with F←Q finq q f≟ F←Q finq x - ... | yes _ = refl - ... | no _ = refl - 1-phase2 : (qs : List Q) → phase2 finq q qs ≡ true → phase2 (fin-∨1 finq) (case2 q) (map case2 qs ) ≡ true - 1-phase2 (x ∷ qs ) p with equal? finq q x | equal? (fin-∨1 finq) (case2 q) (case2 x) | dup04 {q} {x} - ... | true | true | t = refl - ... | false | false | t = 1-phase2 qs p - 1-phase1 : (qs : List Q) → phase1 finq q qs ≡ true → phase1 (fin-∨1 finq) (case2 q) (map case2 qs ) ≡ true - 1-phase1 (x ∷ qs ) p with equal? finq q x | equal? (fin-∨1 finq) (case2 q) (case2 x) | dup04 {q} {x} - ... | true | true | t = 1-phase2 qs p - ... | false | false | t = 1-phase1 qs p - -dup-in-list+iso : { Q : Set } (finq : FiniteSet Q) +dup-in-list+fin : { Q : Set } (finq : FiniteSet Q) → (q : Q) (qs : List Q ) - → dup-in-list (Fin2Finite (finite finq)) (F←Q finq q) (map (F←Q finq) qs) ≡ true + → fin-dup-in-list (F←Q finq q) (map (F←Q finq) qs) ≡ true → dup-in-list finq q qs ≡ true -dup-in-list+iso {Q} finq q qs p = i-phase1 qs p where - dup05 : {q x : Q} → equal? finq q x ≡ equal? (Fin2Finite (finite finq)) (F←Q finq q) (F←Q finq x) - dup05 {q} {x} with F←Q finq q f≟ F←Q finq x - ... | yes _ = refl - ... | no _ = refl - i-phase2 : (qs : List Q) → phase2 (Fin2Finite (finite finq)) (F←Q finq q) (map (F←Q finq) qs) ≡ true +dup-in-list+fin {Q} finq q qs p = i-phase1 qs p where + i-phase2 : (qs : List Q) → fin-phase2 (F←Q finq q) (map (F←Q finq) qs) ≡ true → phase2 finq q qs ≡ true - i-phase2 (x ∷ qs) p with equal? finq q x | equal? (Fin2Finite (finite finq)) (F←Q finq q) (F←Q finq x) | dup05 {q} {x} - ... | true | true | t2 = refl - ... | false | false | t2 = i-phase2 qs p - i-phase1 : (qs : List Q) → dup-in-list (Fin2Finite (finite finq)) (F←Q finq q) (map (F←Q finq) qs) ≡ true + i-phase2 (x ∷ qs) p with equal? finq q x | <-fcmp (F←Q finq q) (F←Q finq x) + ... | true | t = refl + ... | false | tri< a ¬b ¬c = i-phase2 qs p + ... | false | tri≈ ¬a b ¬c = {!!} + ... | false | tri> ¬a ¬b c = i-phase2 qs p + i-phase1 : (qs : List Q) → fin-phase1 (F←Q finq q) (map (F←Q finq) qs) ≡ true → phase1 finq q qs ≡ true - i-phase1 (x ∷ qs) p with equal? finq q x | equal? (Fin2Finite (finite finq)) (F←Q finq q) (F←Q finq x) | dup05 {q} {x} - ... | true | true | t2 = i-phase2 qs p - ... | false | false | t2 = i-phase1 qs p + i-phase1 (x ∷ qs) p with equal? finq q x | <-fcmp (F←Q finq q) (F←Q finq x) + ... | true | tri< a ¬b ¬c = i-phase2 qs {!!} + ... | true | tri≈ ¬a b ¬c = i-phase2 qs p + ... | true | tri> ¬a ¬b c = i-phase2 qs {!!} + ... | false | tri< a ¬b ¬c = i-phase1 qs p + ... | false | tri≈ ¬a b ¬c = {!!} + ... | false | tri> ¬a ¬b c = i-phase1 qs p record Dup-in-list {Q : Set } (finq : FiniteSet Q) (qs : List Q) : Set where field dup : Q is-dup : dup-in-list finq dup qs ≡ true - dup-in-list>n : {Q : Set } → (finq : FiniteSet Q) → (qs : List Q) → (len> : length qs > finite finq ) → Dup-in-list finq qs -dup-in-list>n {Q} finq qs lt = record { - dup = dup-05 - ; is-dup = dup-in-list+iso finq dup-05 qs dup-06 } where - LEM-dup : Dup-in-list finq qs ∨ ( ¬ Dup-in-list finq qs ) - LEM-dup with exists finq ( λ q → dup-in-list finq q qs ) | inspect (exists finq) ( λ q → dup-in-list finq q qs ) - ... | true | record { eq = eq1 } = case1 ( record { dup = Found.found-q dup-01 ; is-dup = Found.found-p dup-01} ) where - dup-01 : Found Q ( λ q → dup-in-list finq q qs ) - dup-01 = found← finq eq1 - ... | false | record { eq = eq1 } = case2 (λ D → ¬-bool ( not-found← finq eq1 (Dup-in-list.dup D)) (Dup-in-list.is-dup D) ) - record NList (n : ℕ) : Set where - field - ls : List (Fin n) - ls>n : length ls > n - dup-02 : (n : ℕ) → (ls : NList n ) → length (NList.ls ls) > n → Dup-in-list (Fin2Finite n) (NList.ls ls) - dup-02 zero ls lt = {!!} - dup-02 (suc n) ls lt = dup-03 lt where - n1 : Fin (suc n) - n1 = fromℕ< refl-≤ - n<n1 : (i : Fin (suc n)) → equal? (Fin2Finite (suc n)) n1 i ≡ false → n1 f> i - n<n1 = {!!} - d-phase2 : (qs : List (Fin (suc n)) ) → length qs > suc n → NList n ∨ ( phase2 (Fin2Finite (suc n)) n1 qs ≡ true ) - d-phase2 [] lt = case1 record { ls = [] ; ls>n = {!!} } - d-phase2 (x ∷ qs) lt with equal? (Fin2Finite (suc n)) n1 x - ... | true = case2 refl - ... | false with d-phase2 qs {!!} - ... | case1 p = case1 record { ls = {!!} ∷ NList.ls p ; ls>n = {!!} } - ... | case2 eq = case2 eq - d-phase1 : (qs : List (Fin (suc n)) ) → length qs > (suc n) → NList n ∨ ( phase1 (Fin2Finite (suc n)) n1 qs ≡ true ) - d-phase1 [] lt = {!!} - d-phase1 (x ∷ qs) lt with equal? (Fin2Finite (suc n)) n1 x - ... | true with d-phase2 qs {!!} - ... | case1 p = case1 record { ls = {!!} ∷ NList.ls p ; ls>n = {!!} } - ... | case2 eq = case2 eq - d-phase1 (x ∷ qs) lt | false with d-phase1 qs {!!} - ... | case1 p = case1 record { ls = {!!} ∷ NList.ls p ; ls>n = {!!} } - ... | case2 eq = case2 eq - dup-03 : length (NList.ls ls) > suc n → Dup-in-list (Fin2Finite (suc n)) (NList.ls ls) - dup-03 lt with d-phase1 (NList.ls ls) {!!} - ... | case1 ls1 = record { dup = fin+1 (Dup-in-list.dup dup-04) ; is-dup = dup-07 } where - dup-04 : Dup-in-list (Fin2Finite n) (NList.ls ls1) - dup-04 = dup-02 n ls1 {!!} - dup-07 : dup-in-list (Fin2Finite (suc n)) (fin+1 (Dup-in-list.dup dup-04)) (NList.ls ls) ≡ true - dup-07 = dup-in-list+iso finq {!!} {!!} (dup-in-list+1 {!!} {!!} qs {!!}) - ... | case2 dup = record { dup = n1 ; is-dup = dup } - dup-05 : Q - dup-05 = Q←F finq (Dup-in-list.dup (dup-02 (finite finq) record { ls = map (F←Q finq) qs ; ls>n = {!!} } {!!} ) ) - dup-06 : dup-in-list (Fin2Finite (finite finq)) (F←Q finq dup-05) (map (F←Q finq) qs) ≡ true - dup-06 = subst (λ k → dup-in-list (Fin2Finite (finite finq)) k (map (F←Q finq) qs) ≡ true ) - {!!} (Dup-in-list.is-dup (dup-02 (finite finq) record { ls = map (F←Q finq) qs ; ls>n = {!!} } {!!} ) ) - +dup-in-list>n {Q} finq qs lt = record { dup = Q←F finq (FDup-in-list.dup dl) + ; is-dup = dup-in-list+fin finq (Q←F finq (FDup-in-list.dup dl)) qs dl01 } where + dl : FDup-in-list (finite finq ) (map (F←Q finq) qs) + dl = fin-dup-in-list>n (map (F←Q finq) qs) {!!} + dl01 : fin-dup-in-list (F←Q finq (Q←F finq (FDup-in-list.dup dl))) (map (F←Q finq) qs) ≡ true + dl01 = subst (λ k → fin-dup-in-list k (map (F←Q finq) qs) ≡ true ) + {!!} ( FDup-in-list.is-dup dl )