Mercurial > hg > Members > kono > Proof > automaton
changeset 188:ec896c9e0044
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 14 Jun 2021 11:12:36 +0900 |
parents | 1402c5b17160 |
children | 6945d2aeb86a |
files | automaton-in-agda/src/gcd.agda |
diffstat | 1 files changed, 26 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Mon Jun 14 09:06:20 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Mon Jun 14 11:12:36 2021 +0900 @@ -37,17 +37,34 @@ k + f * suc k ≡⟨ +-comm zero _ ⟩ (k + f * suc k) + zero ≡⟨ cong pred fa ⟩ n ∎ ) } where open ≡-Reasoning -decf {n} {k} record { factor = f ; remain = (suc r) ; is-factor = fa } = +decf {n} {zero} record { factor = f ; remain = (suc r) ; is-factor = fa } = {!!} +decf {n} {suc k} record { factor = f ; remain = (suc r) ; is-factor = fa } = record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n - f * k + r ≡⟨ cong pred ( begin - suc ( f * k + r ) ≡⟨ +-comm _ r ⟩ - r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩ - (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩ - (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩ - f * k + suc r ≡⟨ fa ⟩ + f * (suc k) + r ≡⟨ cong pred ( begin + suc ( f * (suc k) + r ) ≡⟨ +-comm _ r ⟩ + r + suc (f * (suc k)) ≡⟨ sym (+-assoc r 1 _) ⟩ + (r + 1) + f * (suc k) ≡⟨ cong (λ t → t + f * (suc k) ) (+-comm r 1) ⟩ + (suc r ) + f * (suc k) ≡⟨ +-comm (suc r) _ ⟩ + f * (suc k) + suc r ≡⟨ fa ⟩ suc n ∎ ) ⟩ n ∎ ) } where open ≡-Reasoning +decf-step : {i k i0 : ℕ } → (if : Factor k (suc i)) → (i0f : Factor k i0) → remain if + suc i ≡ i0 → remain (decf if) + i ≡ i0 +decf-step {i} {zero} {i0} record { factor = (suc f) ; remain = zero ; is-factor = fa } i0f eq = ⊥-elim (nat-≡< fa ( + begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩ + suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩ + suc zero ≤⟨ s≤s z≤n ⟩ + suc i ∎ )) where open ≤-Reasoning -- suc (0 + i) ≡ i0 +decf-step {i} {suc k} {i0} record { factor = suc f ; remain = zero ; is-factor = fa } i0f eq = begin + remain (decf (record { factor = suc f ; remain = zero ; is-factor = fa })) + i ≡⟨ refl ⟩ + k + i ≡⟨ {!!} ⟩ + i0 ∎ where open ≡-Reasoning +decf-step {i} {zero} {i0} record { factor = f ; remain = suc r ; is-factor = fa } i0f eq = {!!} +decf-step {i} {suc k} {i0} record { factor = f ; remain = suc r ; is-factor = fa } i0f eq = begin + (remain (decf (record { factor = f ; remain = suc r ; is-factor = fa })) + i) ≡⟨ {!!} ⟩ + suc (r + i) ≡⟨ {!!} ⟩ + i0 ∎ where open ≡-Reasoning + ifk0 : ( i0 k : ℕ ) → (i0f : Factor k i0 ) → ( i0=0 : remain i0f ≡ 0 ) → factor i0f * k + 0 ≡ i0 ifk0 i0 k i0f i0=0 = begin factor i0f * k + 0 ≡⟨ cong (λ m → factor i0f * k + m) (sym i0=0) ⟩ @@ -90,8 +107,7 @@ gcd-gt zero i0 (suc zero) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen gcd-gt zero zero (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = record { factor = factor j0f ; is-factor = ifk0 j0 k j0f j0=0 } gcd-gt zero (suc i0) (suc (suc j)) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = - gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k (decf i0f) i0f (decf jf) - record { factor = factor jf ; remain = remain jf ; is-factor = {!!} } i0=0 {!!} {!!} {!!} + gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k (decf i0f) i0f (decf jf) jf i0=0 {!!} {!!} {!!} gcd-gt (suc zero) i0 zero j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = {!!} -- can't happen gcd-gt (suc (suc i)) i0 zero zero k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = record { factor = factor i0f ; is-factor = ifk0 i0 k i0f i0=0 } gcd-gt (suc (suc i)) i0 zero (suc j0) k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = @@ -99,7 +115,7 @@ gcd-gt (suc zero) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = gcd-gt zero i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!} gcd-gt (suc (suc i)) i0 (suc j) j0 k if i0f jf j0f i0=0 j0=0 ir=i0 jr=j0 = - gcd-gt (suc i) i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 {!!} {!!} + gcd-gt (suc i) i0 j j0 k (decf if) i0f (decf jf) j0f i0=0 j0=0 (decf-step if i0f ir=i0 ) (decf-step jf j0f jr=j0 ) gcd-div : ( i j k : ℕ ) → (if : Factor k i) (jf : Factor k j ) → remain if ≡ 0 → remain jf ≡ 0