Mercurial > hg > Members > kono > Proof > automaton
changeset 206:f1370437c68e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 19 Jun 2021 10:54:51 +0900 |
parents | e97cf4fb67fa |
children | 764bc577b1e9 |
files | automaton-in-agda/src/gcd.agda automaton-in-agda/src/logic.agda automaton-in-agda/src/nat.agda |
diffstat | 3 files changed, 110 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/gcd.agda Fri Jun 18 21:09:50 2021 +0900 +++ b/automaton-in-agda/src/gcd.agda Sat Jun 19 10:54:51 2021 +0900 @@ -170,6 +170,103 @@ → Dividable k ( gcd i j ) gcd-div i j k k>1 if jf = gcd-gt i i j j k k>1 (DtoF if) if (DtoF jf) jf (div-div k>1 if jf) +-- open import Data.Sum.Base +-- factor-0 : (i j : ℕ) → j ≤ i → Factor (i - j) 0 → i ≡ j +-- factor-0 i j lt eq with m*n≡0⇒m≡0∨n≡0 (factor eq) ( m+n≡0⇒m≡0 (factor eq * (i - j)) (is-factor eq ) ) +-- ... | inj₁ x = {!!} +-- ... | inj₂ y = i-j=0→i=j lt y +-- factor eq * (i - j) + remain eq ≡⟨ is-factor eq ⟩ + +gg1 : {i0 : ℕ } → 1 * i0 + 0 ≡ i0 +gg1 {i0} = begin 1 * i0 + 0 ≡⟨ +-comm _ 0 ⟩ + i0 + 0 ≡⟨ +-comm _ 0 ⟩ + i0 ∎ where open ≡-Reasoning + +gg3 : {i0 : ℕ } → i0 * 1 + 0 ≡ i0 +gg3 = trans (+-comm _ 0 ) m*1=m + +open import Data.Sum.Base + +gcd-divable : ( i i0 j j0 : ℕ ) + → (if : Factor i0 j0) (jf : Factor j0 i0) -- factor eq * i0 + (j0 - i0) = j0 + → remain if ≡ j - i → remain jf ≡ i - j + → Dividable ( gcd1 i i0 j j0 ) i0 ∧ Dividable ( gcd1 i i0 j j0 ) j0 +gcd-divable zero i0 zero j0 if jf if=0 jf=0 with <-cmp i0 j0 +... | tri< a ¬b ¬c = ⟪ record { factor = 1 ; is-factor = gg1 } , record { factor = factor if ; is-factor = gg2 } ⟫ where + gg2 : factor if * i0 + 0 ≡ j0 + gg2 = begin + factor if * i0 + 0 ≡⟨ cong (λ k → factor if * i0 + k) (sym if=0) ⟩ + factor if * i0 + remain if ≡⟨ is-factor if ⟩ + j0 ∎ where open ≡-Reasoning +... | tri≈ ¬a refl ¬c = ⟪ record { factor = 1 ; is-factor = gg1 } , record { factor = 1 ; is-factor = gg1 } ⟫ +... | tri> ¬a ¬b c = ⟪ record { factor = factor jf ; is-factor = gg2 } , record { factor = 1 ; is-factor = gg1 } ⟫ where + gg2 : factor jf * j0 + 0 ≡ i0 + gg2 = begin + factor jf * j0 + 0 ≡⟨ cong (λ k → factor jf * j0 + k) (sym jf=0) ⟩ + factor jf * j0 + remain jf ≡⟨ is-factor jf ⟩ + i0 ∎ where open ≡-Reasoning +gcd-divable zero i0 (suc zero) j0 if jf if=0 jf=0 = ⟪ record { factor = i0 ; is-factor = gg3 } , record { factor = j0 ; is-factor = gg3 } ⟫ +gcd-divable zero zero (suc (suc j)) j0 if jf if=0 jf=0 = ⟪ record { factor = factor jf ; is-factor = gg4 } , record { factor = 1 ; is-factor = gg1 } ⟫ + where + gg4 : factor jf * j0 + 0 ≡ zero + gg4 with m*n≡0⇒m≡0∨n≡0 (factor jf) ( m+n≡0⇒m≡0 (factor jf * j0) (is-factor jf)) + ... | inj₁ x = begin + factor jf * j0 + 0 ≡⟨ +-comm _ 0 ⟩ + factor jf * j0 ≡⟨ cong (λ k → k * j0) x ⟩ + 0 ∎ where open ≡-Reasoning + ... | inj₂ y = begin + factor jf * j0 + 0 ≡⟨ +-comm _ 0 ⟩ + factor jf * j0 ≡⟨ cong (λ k → factor jf * k) y ⟩ + factor jf * 0 ≡⟨ *-comm (factor jf) 0 ⟩ + 0 ∎ where open ≡-Reasoning +gcd-divable zero (suc i0) (suc (suc j)) j0 if jf if=0 jf=0 + with gcd-divable i0 (suc i0) (suc j) (suc (suc j)) + record { factor = {!!} ; is-factor = {!!} ; remain = suc j - i0 } + record { factor = {!!} ; is-factor = {!!} ; remain = i0 - suc j } refl refl +... | t = ⟪ record { factor = {!!} ; is-factor = {!!} } , {!!} ⟫ -- Dividable (gcd1 i0 (suc i0) (suc j) (suc (suc j))) (suc i0) +gcd-divable (suc zero) i0 zero j0 if jf if=0 jf=0 = ⟪ record { factor = i0 ; is-factor = gg3 } , record { factor = j0 ; is-factor = gg3 } ⟫ +gcd-divable (suc (suc i)) i0 zero zero if jf if=0 jf=0 = ⟪ record { factor = 1 ; is-factor = gg1 } , record { factor = factor if ; is-factor = gg4 } ⟫ + where + gg4 : factor if * i0 + 0 ≡ zero + gg4 with m*n≡0⇒m≡0∨n≡0 (factor if) ( m+n≡0⇒m≡0 (factor if * i0) (is-factor if)) + ... | inj₁ x = begin + factor if * i0 + 0 ≡⟨ +-comm _ 0 ⟩ + factor if * i0 ≡⟨ cong (λ k → k * i0) x ⟩ + 0 ∎ where open ≡-Reasoning + ... | inj₂ y = begin + factor if * i0 + 0 ≡⟨ +-comm _ 0 ⟩ + factor if * i0 ≡⟨ cong (λ k → factor if * k) y ⟩ + factor if * 0 ≡⟨ *-comm (factor if) 0 ⟩ + 0 ∎ where open ≡-Reasoning +gcd-divable (suc (suc i)) i0 zero (suc j0) if jf if=0 jf=0 with gcd-divable (suc i) (suc (suc i)) j0 (suc j0) {!!} {!!} refl refl +... | t = ⟪ {!!} , {!!} ⟫ +gcd-divable (suc zero) i0 (suc j) j0 if jf if=0 jf=0 = + gcd-divable zero i0 j j0 record { factor = factor if ; is-factor = gg4 ; remain = j - zero } + record { factor = factor jf ; is-factor = gg5 ; remain = zero - j } refl refl where + gg4 : factor if * i0 + (j - zero) ≡ j0 + gg4 = begin + factor if * i0 + (j - zero) ≡⟨ cong ( λ k → factor if * i0 + k) (sym if=0) ⟩ + factor if * i0 + remain if ≡⟨ is-factor if ⟩ + j0 ∎ where open ≡-Reasoning + gg5 : factor jf * j0 + (zero - j) ≡ i0 + gg5 = begin + factor jf * j0 + (zero - j) ≡⟨ cong ( λ k → factor jf * j0 + k) (sym jf=0) ⟩ + factor jf * j0 + remain jf ≡⟨ is-factor jf ⟩ + i0 ∎ where open ≡-Reasoning +gcd-divable (suc (suc i)) i0 (suc j) j0 if jf if=0 jf=0 = + gcd-divable (suc i) i0 j j0 record { factor = factor if ; is-factor = gg4 ; remain = j - suc i } + record { factor = factor jf ; is-factor = gg5 ; remain = suc i - j } refl refl where + gg4 : factor if * i0 + (j - suc i ) ≡ j0 + gg4 = begin + factor if * i0 + ( j - suc i ) ≡⟨ cong ( λ k → factor if * i0 + k ) (sym if=0) ⟩ + factor if * i0 + remain if ≡⟨ is-factor if ⟩ + j0 ∎ where open ≡-Reasoning + gg5 : factor jf * j0 + (suc i - j) ≡ i0 + gg5 = begin + factor jf * j0 + ( suc i - j ) ≡⟨ cong ( λ k → factor jf * j0 + k ) (sym jf=0) ⟩ + factor jf * j0 + remain jf ≡⟨ is-factor jf ⟩ + i0 ∎ where open ≡-Reasoning + gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 gcd22 zero i0 zero o0 = refl gcd22 zero i0 (suc o) o0 = refl
--- a/automaton-in-agda/src/logic.agda Fri Jun 18 21:09:50 2021 +0900 +++ b/automaton-in-agda/src/logic.agda Sat Jun 19 10:54:51 2021 +0900 @@ -23,6 +23,13 @@ _⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m) _⇔_ A B = ( A → B ) ∧ ( B → A ) +∧-exch : {n m : Level} {A : Set n} { B : Set m } → A ∧ B → B ∧ A +∧-exch p = ⟪ _∧_.proj2 p , _∧_.proj1 p ⟫ + +∨-exch : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → B ∨ A +∨-exch (case1 x) = case2 x +∨-exch (case2 x) = case1 x + contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a )
--- a/automaton-in-agda/src/nat.agda Fri Jun 18 21:09:50 2021 +0900 +++ b/automaton-in-agda/src/nat.agda Sat Jun 19 10:54:51 2021 +0900 @@ -200,6 +200,12 @@ open import Data.Product +i-j=0→i=j : {i j : ℕ } → j ≤ i → i - j ≡ 0 → i ≡ j +i-j=0→i=j {zero} {zero} _ refl = refl +i-j=0→i=j {zero} {suc j} () refl +i-j=0→i=j {suc i} {zero} z≤n () +i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq) + minus+1 : {x y : ℕ } → y ≤ x → suc (minus x y) ≡ minus (suc x) y minus+1 {zero} {zero} y≤x = refl minus+1 {suc x} {zero} y≤x = refl