Mercurial > hg > Members > kono > Proof > automaton
changeset 98:f196e739b4bf
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Nov 2019 14:25:42 +0900 |
parents | c1282e442d28 |
children | aca3f1349913 |
files | agda/regular-language.agda |
diffstat | 1 files changed, 10 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Mon Nov 11 13:00:45 2019 +0900 +++ b/agda/regular-language.agda Mon Nov 11 14:25:42 2019 +0900 @@ -298,7 +298,16 @@ → q ≡ case1 (δ (automaton A) qa h) lemma11 q ex = lemma17 lemma19 where lemma17 : exists finab (λ qn → nq qn /\ Nδ NFA (case1 qa) h q) ≡ true → q ≡ case1 (δ (automaton A) qa h) - lemma17 en = {!!} + lemma17 en with found← finab en + ... | S with found-q S | found-p S | qa=q (found-q S) (bool-∧→tt-0 ( found-p S)) + ... | (case1 qq) | e1 | refl = lemma21 q refl where + lemma20 : nq (case1 qa) /\ Concat-NFA.δnfa A B (case1 qa) h q ≡ true + lemma20 = e1 + lemma21 : (qq : states A ∨ states B) → qq ≡ q → q ≡ case1 (δ (automaton A) qa h) + lemma21 (case1 x) refl = cong ( λ k → case1 k ) (sym lemma23 ) where + lemma23 : (δ (automaton A) qa h) ≡ x + lemma23 = equal→refl (afin A) ( bool-∧→tt-1 e1) + lemma21 (case2 x) refl = {!!} -- ⊥-elim (ne (bool-∧→tt-1 e1)) lemma18 : (qn : states A ∨ states B) → nq qn /\ Nδ NFA qn h q ≡ true → nq qn /\ Nδ NFA (case1 qa) h q ≡ true lemma18 qn eq = begin nq qn /\ Nδ NFA (case1 qa) h q