Mercurial > hg > Members > kono > Proof > automaton
changeset 129:fb6237e9a98b
bad direction on fin-<
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 23 Nov 2019 17:43:02 +0900 |
parents | 5275a0163b1d |
children | 08990387c919 |
files | agda/finiteSet.agda |
diffstat | 1 files changed, 19 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/finiteSet.agda Sat Nov 23 14:39:12 2019 +0900 +++ b/agda/finiteSet.agda Sat Nov 23 17:43:02 2019 +0900 @@ -388,30 +388,25 @@ elm<n : toℕ (FiniteSet.F←Q fa elm ) < n fin-< : {A : Set} → { n m : ℕ } → (n<m : n < m ) → (fa : FiniteSet A {m}) → FiniteSet (Fin-< n<m fa) {n} -fin-< {A} {n} {m} n<m fa = record { - F←Q = F←Q - ; Q←F = Q←F - ; finiso← = finiso← - ; finiso→ = finiso→ - } where - F←Q : Fin-< n<m fa → Fin n - F←Q f = fromℕ≤ ( Fin-<.elm<n f ) - Q←F : Fin n → Fin-< n<m fa - Q←F f = record { elm = FiniteSet.Q←F fa (fromℕ≤ f<m); elm<n = elm<n } where - f<m : toℕ f < m - f<m = Data.Nat.Properties.<-trans (toℕ<n f ) n<m - elm<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ f<m))) < n - elm<n = subst (λ k → k < n ) (cong ( λ k → toℕ k ) (sym (FiniteSet.finiso← fa _ ))) - (subst (λ k → k < n ) (sym (toℕ-fromℕ≤ f<m)) (toℕ<n f) ) - finiso← : (f : Fin n) → F←Q (Q←F f) ≡ f - finiso← f = lemma where - lemma : fromℕ≤ (subst (λ k → suc k ≤ n) - (cong toℕ (sym (FiniteSet.finiso← fa (fromℕ≤ (Data.Nat.Properties.<-trans (toℕ<n f) n<m))))) - (subst (λ k → suc k ≤ n) (sym (toℕ-fromℕ≤ (Data.Nat.Properties.<-trans (toℕ<n f) n<m))) (toℕ<n f))) ≡ f - lemma = {!!} - finiso→ : (q : Fin-< n<m fa) → Q←F (F←Q q) ≡ q - finiso→ q = {!!} - +fin-< {A} {zero} {m} (s≤s z≤n) fa = record { Q←F = λ () ; F←Q = λ () ; finiso← = λ () ; finiso→ = λ () } +fin-< {A} {suc n} {m} (s≤s n<m) fa = iso-fin (fin-∨1 (fin-< {A} {n} {m} (Data.Nat.Properties.<-trans n<m a<sa) fa)) iso where + fin- : FiniteSet (Fin-< (Data.Nat.Properties.<-trans n<m a<sa) fa) + fin- = fin-< {A} {n} {m} (Data.Nat.Properties.<-trans n<m a<sa) fa + f<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)))) < suc n + f<n = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ≤ _ )) a<sa) + iso : ISO (One ∨ Fin-< (Data.Nat.Properties.<-trans n<m a<sa) fa) (Fin-< (s≤s n<m) fa) + ISO.A←B iso x with fromℕ≤ (Fin-<.elm<n x ) + ISO.A←B iso x | zero = case1 one + ISO.A←B iso x | suc f = case2 ( FiniteSet.Q←F fin- f ) + ISO.B←A iso (case1 one) = record { elm = FiniteSet.Q←F fa (fromℕ≤ (Data.Nat.Properties.<-trans n<m a<sa)) ; elm<n = f<n } + ISO.B←A iso (case2 record { elm = elm ; elm<n = elm<n }) = record { elm = elm ; elm<n = Data.Nat.Properties.<-trans elm<n a<sa } + ISO.iso← iso (case1 one) with fromℕ≤ f<n + ISO.iso← iso (case1 one) | zero = refl + ISO.iso← iso (case1 one) | suc t = {!!} + ISO.iso← iso (case2 x) = {!!} + ISO.iso→ iso x with fromℕ≤ (Fin-<.elm<n x ) + ISO.iso→ iso x | zero = {!!} + ISO.iso→ iso x | suc f = {!!} fin-× : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A × B) {a * b} fin-× {A} {B} {a} {b} fa fb with FiniteSet→Fin fa