Mercurial > hg > Members > kono > Proof > automaton1
changeset 1:7399aae907fc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 13 Nov 2020 13:03:56 +0900 |
parents | 9615a94b18ca |
children | b4548639121e |
files | automaton.agda nfa.agda regular-language.agda |
diffstat | 3 files changed, 28 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton.agda Thu Nov 12 11:45:34 2020 +0900 +++ b/automaton.agda Fri Nov 13 13:03:56 2020 +0900 @@ -11,7 +11,6 @@ field δ : Q → Σ → Q F : Q → Set - exists : (Q → Set) → Set open Automaton @@ -58,10 +57,10 @@ qe3 : P q₃ → exists-in-Q3 P a16 : Automaton Q3 Σ2 -a16 = record { δ = δ16 ; F = λ q → a16end q ; exists = exists-in-Q3 } +a16 = record { δ = δ16 ; F = λ q → a16end q } a16' : Automaton Q3 Σ2 -a16' = record { δ = δ16' ; F = λ q → q ≡ q₂ ; exists = exists-in-Q3 } +a16' = record { δ = δ16' ; F = λ q → q ≡ q₂ } -- -- ∷ → ∷ → ∷ → [] @@ -202,7 +201,7 @@ δ19 q₃ _ = q₁ a19 : Automaton Q3 Σ2 -a19 = record { δ = δ19 ; F = λ q → q ≡ q₁ ; exists = exists-in-Q3 } +a19 = record { δ = δ19 ; F = λ q → q ≡ q₁ } -- input is empty or ends in s0
--- a/nfa.agda Thu Nov 12 11:45:34 2020 +0900 +++ b/nfa.agda Fri Nov 13 13:03:56 2020 +0900 @@ -3,6 +3,7 @@ open import Relation.Binary.PropositionalEquality open import Data.List +open import Relation.Nullary open import automaton open import logic @@ -10,21 +11,22 @@ : Set (Suc n) where field Nδ : Q → Σ → Q → Set - NF : Q → Set - Nexists : (Q → Set) → Set + NF : Q → Set + Nexists : (Q → Set) → Set open NAutomaton + naccept : {n : Level} {Q : Set n} {Σ : Set} → NAutomaton Q Σ → (Q → Set) → List Σ → Set naccept {n} {Q} {Σ} nfa qs [] = Nexists nfa (λ q → qs q ∧ NF nfa q ) naccept {n} {Q} {Σ} nfa qs (x ∷ input) = Nexists nfa (λ q → qs q ∧ (naccept nfa (Nδ nfa q x) input )) -ntrace : {n : Level} {Q : Set n} {Σ : Set } → (NFA : NAutomaton Q Σ) → (start : Q → Set ) → (input : List Σ ) → naccept NFA start input - → ((Q → Set) → List Q) - → List (List Q) -ntrace {n} {Q} {Σ} A q [] a list = list q ∷ [] -ntrace {n} {Q} {Σ} A q (x ∷ t) a list = list q ∷ ( ntrace A {!!} t {!!} list ) +record DecStates {n : Level} ( Q : Set n ) : Set (Suc n) where + field + QList : List Q + QDec : (P : Q → Set) → (q : Q) → Dec (P q) + data transition136 : Q3 → Σ2 → Q3 → Set where d0 : transition136 q₁ s1 q₂ @@ -46,6 +48,19 @@ example136-2 = naccept nfa136 start136 ( s1 ∷ s0 ∷ s1 ∷ s0 ∷ s1 ∷ [] ) +nfa136-P : (q : Q3 → Set) → (input : List Σ2 ) → Dec (naccept nfa136 q input ) +nfa136-P q [] = {!!} +nfa136-P q (x ∷ t) = {!!} + +Q3List : List Q3 +Q3List = q₁ ∷ q₂ ∷ q₃ ∷ [] + +nfa136trace : (q : Q3 → Set) → (input : List Σ2 ) → naccept nfa136 q input → List (List Q3) +nfa136trace q [] (qe1 [ proj1 , refl ]) = {!!} +nfa136trace q (x ∷ t) (qe1 [ proj1 , a ]) = {!!} +nfa136trace q (x ∷ t) (qe2 [ proj1 , a ]) = {!!} +nfa136trace q (x ∷ t) (qe3 [ proj1 , a ]) = {!!} + -- -- ((Q → Set) → Set) → ((Q → Set) → Set) → Set -- @@ -58,7 +73,6 @@ subset-construction {n} {Q} { Σ} NFA = record { δ = λ qs x qs → Nexists NFA (λ q → Nδ NFA q x qs ) ; F = λ qs → Nexists NFA ( λ q → NF NFA q ) - ; exists = Nexists→exits NFA -- what this means? } subset-construction-lemma→ : { Q : Set } { Σ : Set } → @@ -81,11 +95,11 @@ open Automaton open import Data.Empty -Concat-exists : {n : Level} {Σ : Set} → (A B : RegularLanguage {n} Σ ) → (states A ∨ states B → Set) → Set -Concat-exists {n} {Σ} A B P = exists (automaton A) (λ q → P (case1 q)) ∨ exists (automaton B) (λ q → P (case2 q)) +-- Concat-exists : {n : Level} {Σ : Set} → (A B : RegularLanguage {n} Σ ) → (states A ∨ states B → Set) → Set +-- Concat-exists {n} {Σ} A B P = exists (automaton A) (λ q → P (case1 q)) ∨ exists (automaton B) (λ q → P (case2 q)) Concat-NFA : {n : Level} {Σ : Set} → (A B : RegularLanguage {n} Σ ) → NAutomaton (states A ∨ states B) Σ -Concat-NFA {n} {Σ} A B = record { Nδ = δnfa ; NF = nend ; Nexists = Concat-exists A B } +Concat-NFA {n} {Σ} A B = record { Nδ = δnfa ; NF = nend ; Nexists = {!!} } module Concat-NFA where data δnfa : states A ∨ states B → Σ → states A ∨ states B → Set where a-case : {q : states A} {i : Σ } → δnfa ( case1 q) i (case1 (δ (automaton A) q i))
--- a/regular-language.agda Thu Nov 12 11:45:34 2020 +0900 +++ b/regular-language.agda Fri Nov 13 13:03:56 2020 +0900 @@ -63,12 +63,6 @@ isRegular : {n : Level} {Σ : Set} → (A : language {Σ} ) → ( x : List Σ ) → (r : RegularLanguage {n} Σ ) → Set (Suc Zero) isRegular A x r = A x ≡ contain r x --- --- (states A × states B → Set) → ( states A → Set ) → ( states B → Set ) → Set --- -exists-Union : {n : Level} {Σ : Set} → (A B : RegularLanguage {n} Σ ) → (states A × states B → Set) → Set -exists-Union A B Pab = exists (automaton A) (λ qa → exists (automaton B) (λ qb → Pab (qa , qb)) ) - M-Union : {n : Level} {Σ : Set} → (A B : RegularLanguage {n} Σ ) → RegularLanguage Σ M-Union {n} {Σ} A B = record { states = states A × states B @@ -76,7 +70,6 @@ ; automaton = record { δ = λ q x → ( δ (automaton A) (proj₁ q) x , δ (automaton B) (proj₂ q) x ) ; F = λ q → ( F (automaton A) (proj₁ q) ∨ F (automaton B) (proj₂ q) ) - ; exists = exists-Union A B } }