Mercurial > hg > Members > kono > Proof > category
annotate freyd.agda @ 305:211f6bec9b4a
subset
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jan 2014 09:52:13 +0900 |
parents | bd7b3f3d1d4c |
children | 92475fe5f59e |
rev | line source |
---|---|
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 open import Category.Sets |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 module freyd {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 (C : Category zero zero zero ) |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 where |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import Relation.Binary.Core |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 |
305 | 11 -- C is locally small |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 postulate ≈→≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ]) → x ≡ y |
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 |
305 | 14 infix 4 _⊆_ _⊇_ |
304
bd7b3f3d1d4c
Freyd Adjoint Functor Theorem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
15 |
305 | 16 _⊆_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _ |
17 P ⊆ Q = ∀ {x : P} → {y : Q } → x ≡ y | |
18 | |
19 _⊇_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _ | |
20 Q ⊇ P = ∀ {x : P} → {y : Q } → x ≡ y | |
21 |