Mercurial > hg > Members > kono > Proof > category
annotate equalizer.agda @ 217:306f07bece85
add equalizer+h
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 04 Sep 2013 12:13:27 +0900 |
parents | 0135419f375c |
children | 749a1ecbc0b5 |
rev | line source |
---|---|
205 | 1 --- |
2 -- | |
3 -- Equalizer | |
4 -- | |
208 | 5 -- e f |
205 | 6 -- c --------> a ----------> b |
208 | 7 -- ^ . ----------> |
205 | 8 -- | . g |
208 | 9 -- |k . |
10 -- | . h | |
205 | 11 -- d |
12 -- | |
13 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
14 ---- | |
15 | |
16 open import Category -- https://github.com/konn/category-agda | |
17 open import Level | |
18 module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where | |
19 | |
20 open import HomReasoning | |
21 open import cat-utility | |
22 | |
209 | 23 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
205 | 24 field |
209 | 25 e : Hom A c a |
215 | 26 ef=eg : A [ A [ f o e ] ≈ A [ g o e ] ] |
209 | 27 k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c |
215 | 28 ek=h : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ e o k {d} h eq ] ≈ h ] |
29 uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → | |
214 | 30 A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] |
209 | 31 equalizer : Hom A c a |
32 equalizer = e | |
206 | 33 |
209 | 34 record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
206 | 35 field |
212 | 36 α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A c a |
214 | 37 γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c |
212 | 38 δ : {a b c : Obj A } → (f : Hom A a b) → Hom A a c |
213 | 39 b1 : A [ A [ f o α {a} {b} {a} f g ] ≈ A [ g o α f g ] ] |
214 | 40 b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ {a} {b} {c} f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] |
213 | 41 b3 : A [ A [ α f f o δ {a} {b} {a} f ] ≈ id1 A a ] |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
42 -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] |
215 | 43 b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
44 -- A [ α f g o β f g h ] ≈ h |
214 | 45 β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c |
46 β {d} {e} {a} {b} f g h = A [ γ {a} {b} {c} f g h o δ (A [ f o h ]) ] | |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
47 |
209 | 48 open Equalizer |
49 open EqEqualizer | |
50 | |
217 | 51 -- Equalizer is unique up to iso |
52 | |
53 equalizer-iso : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | |
54 → Hom A c c' --- != id1 A c | |
55 equalizer-iso {c} eqa eqa' = k eqa' (e eqa) (ef=eg eqa) | |
56 | |
57 -- e eqa f g f | |
58 -- c ----------> a ------->b | |
59 -- ---> d ---> | |
60 -- i h | |
61 | |
62 equalizer+h : {a b c d : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) (i : Hom A c d ) → (h : Hom A d a ) | |
63 → A [ A [ h o i ] ≈ e eqa ] | |
64 → Equalizer A {c} (A [ f o h ]) (A [ g o h ] ) | |
65 equalizer+h {a} {b} {c} {d} {f} {g} eqa i h eq = record { | |
66 e = i ; -- Hom A a d | |
67 ef=eg = ef=eg1 ; | |
68 k = λ j eq' → k eqa (A [ h o j ]) (fhj=ghj j eq' ) ; | |
69 ek=h = ek=h1 ; | |
70 uniqueness = uniqueness1 | |
71 } where | |
72 fhj=ghj : {d' : Obj A } → (j : Hom A d' d ) → | |
73 A [ A [ A [ f o h ] o j ] ≈ A [ A [ g o h ] o j ] ] → | |
74 A [ A [ f o A [ h o j ] ] ≈ A [ g o A [ h o j ] ] ] | |
75 fhj=ghj j eq' = let open ≈-Reasoning (A) in | |
76 begin | |
77 f o ( h o j ) | |
78 ≈⟨ assoc ⟩ | |
79 (f o h ) o j | |
80 ≈⟨ eq' ⟩ | |
81 (g o h ) o j | |
82 ≈↑⟨ assoc ⟩ | |
83 g o ( h o j ) | |
84 ∎ | |
85 ef=eg1 : A [ A [ A [ f o h ] o i ] ≈ A [ A [ g o h ] o i ] ] | |
86 ef=eg1 = let open ≈-Reasoning (A) in | |
87 begin | |
88 ( f o h ) o i | |
89 ≈↑⟨ assoc ⟩ | |
90 f o (h o i ) | |
91 ≈⟨ cdr eq ⟩ | |
92 f o (e eqa) | |
93 ≈⟨ ef=eg eqa ⟩ | |
94 g o (e eqa) | |
95 ≈↑⟨ cdr eq ⟩ | |
96 g o (h o i ) | |
97 ≈⟨ assoc ⟩ | |
98 ( g o h ) o i | |
99 ∎ | |
100 ek=h1 : {d' : Obj A} {h' : Hom A d' d} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} → | |
101 A [ A [ i o k eqa (A [ h o h' ]) (fhj=ghj h' eq') ] ≈ h' ] | |
102 ek=h1 {d'} {h'} {eq'} = let open ≈-Reasoning (A) in | |
103 begin | |
104 i o k eqa (h o h' ) (fhj=ghj h' eq') | |
105 ≈⟨ {!!} ⟩ | |
106 h' | |
107 ∎ | |
108 uniqueness1 : {d' : Obj A} {h' : Hom A d' d} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} {k' : Hom A d' c} → | |
109 A [ A [ i o k' ] ≈ h' ] → A [ k eqa (A [ h o h' ]) (fhj=ghj h' eq') ≈ k' ] | |
110 uniqueness1 {d'} {h'} {eq'} {k'} ik=h = let open ≈-Reasoning (A) in | |
111 begin | |
112 k eqa (A [ h o h' ]) (fhj=ghj h' eq') | |
113 ≈⟨ uniqueness eqa ( begin | |
114 e eqa o k' | |
115 ≈↑⟨ car eq ⟩ | |
116 (h o i ) o k' | |
117 ≈↑⟨ assoc ⟩ | |
118 h o (i o k') | |
119 ≈⟨ cdr ik=h ⟩ | |
120 h o h' | |
121 ∎ ) ⟩ | |
122 k' | |
123 ∎ | |
215 | 124 |
211 | 125 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b) → |
126 ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g | |
209 | 127 lemma-equ1 A {a} {b} {c} f g eqa = record { |
216 | 128 α = λ f g → e (eqa f g ) ; -- Hom A c a |
214 | 129 γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h o (e ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d |
213 | 130 δ = λ {a} f → k (eqa f f) (id1 A a) (lemma-equ2 f); -- Hom A a c |
211 | 131 b1 = ef=eg (eqa f g) ; |
212 | 132 b2 = lemma-equ5 ; |
133 b3 = lemma-equ3 ; | |
215 | 134 b4 = lemma-equ6 |
211 | 135 } where |
216 | 136 -- |
137 -- e eqa f g f | |
138 -- c ----------> a ------->b | |
139 -- ^ g | |
140 -- | | |
141 -- |k₁ = e eqa (f o (e (eqa f g))) (g o (e (eqa f g)))) | |
142 -- | | |
143 -- d | |
144 -- | |
145 -- | |
146 -- e o id1 ≈ e → k e ≈ id | |
147 | |
211 | 148 lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] |
149 lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom | |
213 | 150 lemma-equ3 : A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] |
151 lemma-equ3 = let open ≈-Reasoning (A) in | |
211 | 152 begin |
153 e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) | |
215 | 154 ≈⟨ ek=h (eqa f f ) ⟩ |
211 | 155 id1 A a |
156 ∎ | |
214 | 157 lemma-equ4 : {a b c d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → |
212 | 158 A [ A [ f o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ] |
214 | 159 lemma-equ4 {a} {b} {c} {d} f g h = let open ≈-Reasoning (A) in |
212 | 160 begin |
161 f o ( h o e (eqa (f o h) ( g o h ))) | |
162 ≈⟨ assoc ⟩ | |
163 (f o h) o e (eqa (f o h) ( g o h )) | |
164 ≈⟨ ef=eg (eqa (A [ f o h ]) (A [ g o h ])) ⟩ | |
165 (g o h) o e (eqa (f o h) ( g o h )) | |
166 ≈↑⟨ assoc ⟩ | |
167 g o ( h o e (eqa (f o h) ( g o h ))) | |
168 ∎ | |
169 lemma-equ5 : {d : Obj A} {h : Hom A d a} → A [ | |
214 | 170 A [ e (eqa f g) o k (eqa f g) (A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} {c} f g h) ] |
212 | 171 ≈ A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] |
172 lemma-equ5 {d} {h} = let open ≈-Reasoning (A) in | |
173 begin | |
215 | 174 e (eqa f g) o k (eqa f g) (h o e (eqa (f o h) (g o h))) (lemma-equ4 {a} {b} {c} f g h) |
175 ≈⟨ ek=h (eqa f g) ⟩ | |
212 | 176 h o e (eqa (f o h ) ( g o h )) |
177 ∎ | |
215 | 178 lemma-equ6 : {d : Obj A} {k₁ : Hom A d c} → A [ |
179 A [ k (eqa f g) (A [ A [ e (eqa f g) o k₁ ] o e (eqa (A [ f o A [ e (eqa f g) o k₁ ] ]) (A [ g o A [ e (eqa f g) o k₁ ] ])) ]) | |
180 (lemma-equ4 {a} {b} {c} f g (A [ e (eqa f g) o k₁ ])) o | |
181 k (eqa (A [ f o A [ e (eqa f g) o k₁ ] ]) (A [ f o A [ e (eqa f g) o k₁ ] ])) (id1 A d) (lemma-equ2 (A [ f o A [ e (eqa f g) o k₁ ] ])) ] | |
182 ≈ k₁ ] | |
183 lemma-equ6 {d} {k₁} = let open ≈-Reasoning (A) in | |
184 begin | |
185 ( k (eqa f g) (( ( e (eqa f g) o k₁ ) o e (eqa (( f o ( e (eqa f g) o k₁ ) )) (( g o ( e (eqa f g) o k₁ ) ))) )) | |
186 (lemma-equ4 {a} {b} {c} f g (( e (eqa f g) o k₁ ))) o | |
187 k (eqa (( f o ( e (eqa f g) o k₁ ) )) (( f o ( e (eqa f g) o k₁ ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o k₁ ) ))) ) | |
188 ≈⟨ car ( uniqueness (eqa f g) ( begin | |
189 e (eqa f g) o k₁ | |
190 ≈⟨ {!!} ⟩ | |
191 (e (eqa f g) o k₁) o e (eqa (f o e (eqa f g) o k₁) (g o e (eqa f g) o k₁)) | |
192 ∎ )) ⟩ | |
193 k₁ o k (eqa (( f o ( e (eqa f g) o k₁ ) )) (( f o ( e (eqa f g) o k₁ ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o k₁ ) ))) | |
194 ≈⟨ cdr ( uniqueness (eqa (( f o ( e (eqa f g) o k₁ ) )) (( f o ( e (eqa f g) o k₁ ) ))) ( begin | |
195 e (eqa (f o e (eqa f g) o k₁) (f o e (eqa f g) o k₁)) o id1 A d | |
196 ≈⟨ {!!} ⟩ | |
197 id1 A d | |
198 ∎ )) ⟩ | |
199 k₁ o id1 A d | |
200 ≈⟨ idR ⟩ | |
201 k₁ | |
202 ∎ | |
211 | 203 |
204 | |
212 | 205 |
206 | |
207 | |
215 | 208 |
209 |