Mercurial > hg > Members > kono > Proof > category
changeset 213:f2faee0897c7
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 Sep 2013 01:25:21 +0900 |
parents | 8b3d3f69b725 |
children | f8afdb9ed99a |
files | equalizer.agda |
diffstat | 1 files changed, 6 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Tue Sep 03 01:11:59 2013 +0900 +++ b/equalizer.agda Tue Sep 03 01:25:21 2013 +0900 @@ -36,11 +36,11 @@ α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A c a γ : {a b d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c d δ : {a b c : Obj A } → (f : Hom A a b) → Hom A a c - b1 : A [ A [ f o α f g ] ≈ A [ g o α f g ] ] + b1 : A [ A [ f o α {a} {b} {a} f g ] ≈ A [ g o α f g ] ] b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] - b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] + b3 : A [ A [ α f f o δ {a} {b} {a} f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] - b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ ? ] + b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ {!!} ] -- A [ α f g o β f g h ] ≈ h -- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A a d -- β {d} {e} {a} {b} f g h = A [ γ {a} {b} {d} f g h o δ (A [ f o h ]) ] @@ -53,7 +53,7 @@ lemma-equ1 A {a} {b} {c} f g eqa = record { α = λ f g → e (eqa f g ) ; -- Hom A c a γ = λ {a} {b} {d} f g h → ( k (eqa f g ) ( A [ h o (e ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {d} f g h ) ) ; -- Hom A c d - δ = λ f → k (eqa f f) (id1 A (Category.dom A f)) (lemma-equ2 f); -- Hom A a c + δ = λ {a} f → k (eqa f f) (id1 A a) (lemma-equ2 f); -- Hom A a c b1 = ef=eg (eqa f g) ; b2 = lemma-equ5 ; b3 = lemma-equ3 ; @@ -61,8 +61,8 @@ } where lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom - lemma-equ3 : {e' : Obj A} → A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] - lemma-equ3 {e'} = let open ≈-Reasoning (A) in + lemma-equ3 : A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] + lemma-equ3 = let open ≈-Reasoning (A) in begin e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ≈⟨ ke=h (eqa f f ) (lemma-equ2 f) ⟩