Mercurial > hg > Members > kono > Proof > category
annotate freyd2.agda @ 600:3e2ef72d8d2f
Set Completeness unfinished
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 03 Jun 2017 09:46:59 +0900 |
parents | 01a0dda67a8b |
children | 7194ba55df56 |
rev | line source |
---|---|
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 open import Category.Sets |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 module freyd2 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 where |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 open import HomReasoning |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import cat-utility |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 open import Relation.Binary.Core |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
11 open import Function |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 ---------- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
15 -- a : Obj A |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
16 -- U : A → Sets |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 -- U ⋍ Hom (a,-) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
20 -- A is Locally small |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
21 postulate ≈-≡ : { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
22 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
23 import Relation.Binary.PropositionalEquality |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
24 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
25 postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
26 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
27 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
28 ---- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
29 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
30 -- Hom ( a, - ) is Object mapping in co Yoneda Functor |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
31 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
32 ---- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
33 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
34 open NTrans |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
35 open Functor |
498
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
36 open Limit |
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
37 open IsLimit |
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
38 open import Category.Cat |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
39 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
40 HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
41 HomA {c₁} {c₂} {ℓ} A a = record { |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
42 FObj = λ b → Hom A a b |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
43 ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
44 ; isFunctor = record { |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
45 identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ; |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
46 distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ; |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
47 ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
48 } |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
49 } where |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
50 lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
51 lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} idL |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
52 lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
53 A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
54 lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
55 A [ A [ g o f ] o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
56 ≈↑⟨ assoc ⟩ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
57 A [ g o A [ f o x ] ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
58 ≈⟨⟩ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
59 ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
60 ∎ ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
61 lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
62 lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
63 A [ f o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
64 ≈⟨ resp refl-hom eq ⟩ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
65 A [ g o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
66 ∎ ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
67 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
68 |
502 | 69 -- {*}↓U has preinitial full subcategory iff U is representable |
70 | |
71 record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (b : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where | |
72 field | |
73 -- FObj U x : A → Set | |
74 -- FMap U f = Set → Set | |
75 -- λ b → Hom (a,b) : A → Set | |
76 -- λ f → Hom (a,-) = λ b → Hom a b | |
77 | |
78 repr→ : NTrans A (Sets {c₂}) U (HomA A b ) | |
79 repr← : NTrans A (Sets {c₂}) (HomA A b) U | |
80 representable→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A b) x )] | |
81 representable← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] | |
82 | |
83 -- HpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → (b : Obj A) | |
84 -- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) | |
85 -- → LimitPreserve A I (Sets {c₂}) ( HomA A b ) | |
86 -- HpreseveLimit {_} { c₂} A b I = record { | |
87 -- preserve = λ Γ limita → record { | |
88 -- limit = λ a t → limitu a Γ t limita | |
89 -- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} | |
90 -- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f | |
91 -- } | |
92 -- } where | |
93 -- limitu : ( a : Obj Sets ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) → | |
94 -- Hom Sets a (FObj (HomA A b) (a0 limita)) | |
95 -- limitu = {!!} | |
96 -- t0f=tu : { a : Obj Sets } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) → | |
97 -- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o limitu a Γ t limita ] ≈ TMap t i ] | |
98 -- t0f=tu = {!!} | |
99 -- limit-uniquenessu : { a : Obj Sets } → (Γ : Functor I A ) | |
100 -- → ( limita : Limit A I Γ ) → | |
101 -- ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( f : Hom Sets a (FObj (HomA A b) (a0 limita)) ) | |
102 -- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o f ] ≡ TMap t i ) ) | |
103 -- → Sets [ limitu a Γ t limita ≈ f ] | |
104 -- limit-uniquenessu = {!!} | |
498
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
105 |
499
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
106 |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
107 |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
108 -- |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
109 -- |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
110 -- UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A) |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
111 -- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
112 -- ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
113 -- UpreseveLimit {_} { c₂} A U b I rep = record { |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
114 -- preserve = λ Γ limita → record { |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
115 -- limit = λ a t → limitu a Γ t limita |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
116 -- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
117 -- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
118 -- } |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
119 -- } where |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
120 -- limitu : ( a : Obj (Sets {c₂}) ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
121 -- Hom Sets a (FObj U (a0 limita)) |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
122 -- limitu = {!!} |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
123 -- t0f=tu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
124 -- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o limitu a Γ t limita ] ≈ TMap t i ] |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
125 -- t0f=tu = {!!} |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
126 -- limit-uniquenessu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
127 -- → ( limita : Limit A I Γ ) → |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
128 -- ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( f : Hom Sets a (FObj U (a0 limita)) ) |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
129 -- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o f ] ≡ TMap t i ) ) |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
130 -- → Sets [ limitu a Γ t limita ≈ f ] |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
131 -- limit-uniquenessu = {!!} |
511fd37d90ec
prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
498
diff
changeset
|
132 -- |