annotate freyd2.agda @ 600:3e2ef72d8d2f

Set Completeness unfinished
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 03 Jun 2017 09:46:59 +0900
parents 01a0dda67a8b
children 7194ba55df56
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Category -- https://github.com/konn/category-agda
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Level
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Category.Sets
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 module freyd2
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 where
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import HomReasoning
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import cat-utility
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Binary.Core
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Function
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 ----------
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 --
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 -- a : Obj A
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 -- U : A → Sets
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 -- U ⋍ Hom (a,-)
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 --
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- A is Locally small
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 postulate ≈-≡ : { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 import Relation.Binary.PropositionalEquality
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 ----
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 --
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 -- Hom ( a, - ) is Object mapping in co Yoneda Functor
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 --
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 ----
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 open NTrans
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35 open Functor
498
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
36 open Limit
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
37 open IsLimit
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
38 open import Category.Cat
497
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40 HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂})
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 HomA {c₁} {c₂} {ℓ} A a = record {
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 FObj = λ b → Hom A a b
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43 ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y)
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44 ; isFunctor = record {
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ;
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46 distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ;
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47 ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq )
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48 }
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
49 } where
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
50 lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51 lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} idL
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52 lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
53 A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
54 lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55 A [ A [ g o f ] o x ]
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 ≈↑⟨ assoc ⟩
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 A [ g o A [ f o x ] ]
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 ≈⟨⟩
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59 ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x )
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
60 ∎ )
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
61 lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ]
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
62 lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
63 A [ f o x ]
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
64 ≈⟨ resp refl-hom eq ⟩
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
65 A [ g o x ]
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
66 ∎ )
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
67
e8b85a05a6b2 add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
68
502
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
69 -- {*}↓U has preinitial full subcategory iff U is representable
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
70
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
71 record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (b : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
72 field
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
73 -- FObj U x : A → Set
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
74 -- FMap U f = Set → Set
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
75 -- λ b → Hom (a,b) : A → Set
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
76 -- λ f → Hom (a,-) = λ b → Hom a b
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
77
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
78 repr→ : NTrans A (Sets {c₂}) U (HomA A b )
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
79 repr← : NTrans A (Sets {c₂}) (HomA A b) U
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
80 representable→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A b) x )]
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
81 representable← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)]
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
82
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
83 -- HpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → (b : Obj A)
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
84 -- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' )
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
85 -- → LimitPreserve A I (Sets {c₂}) ( HomA A b )
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
86 -- HpreseveLimit {_} { c₂} A b I = record {
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
87 -- preserve = λ Γ limita → record {
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
88 -- limit = λ a t → limitu a Γ t limita
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
89 -- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i}
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
90 -- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
91 -- }
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
92 -- } where
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
93 -- limitu : ( a : Obj Sets ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) →
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
94 -- Hom Sets a (FObj (HomA A b) (a0 limita))
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
95 -- limitu = {!!}
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
96 -- t0f=tu : { a : Obj Sets } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) →
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
97 -- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o limitu a Γ t limita ] ≈ TMap t i ]
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
98 -- t0f=tu = {!!}
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
99 -- limit-uniquenessu : { a : Obj Sets } → (Γ : Functor I A )
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
100 -- → ( limita : Limit A I Γ ) →
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
101 -- ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( f : Hom Sets a (FObj (HomA A b) (a0 limita)) )
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
102 -- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o f ] ≡ TMap t i ) )
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
103 -- → Sets [ limitu a Γ t limita ≈ f ]
01a0dda67a8b on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 499
diff changeset
104 -- limit-uniquenessu = {!!}
498
c981a2f0642f UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 497
diff changeset
105
499
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
106
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
107
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
108 --
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
109 --
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
110 -- UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A)
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
111 -- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' )
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
112 -- ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
113 -- UpreseveLimit {_} { c₂} A U b I rep = record {
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
114 -- preserve = λ Γ limita → record {
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
115 -- limit = λ a t → limitu a Γ t limita
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
116 -- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i}
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
117 -- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
118 -- }
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
119 -- } where
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
120 -- limitu : ( a : Obj (Sets {c₂}) ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) →
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
121 -- Hom Sets a (FObj U (a0 limita))
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
122 -- limitu = {!!}
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
123 -- t0f=tu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) →
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
124 -- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o limitu a Γ t limita ] ≈ TMap t i ]
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
125 -- t0f=tu = {!!}
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
126 -- limit-uniquenessu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A )
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
127 -- → ( limita : Limit A I Γ ) →
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
128 -- ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( f : Hom Sets a (FObj U (a0 limita)) )
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
129 -- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o f ] ≡ TMap t i ) )
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
130 -- → Sets [ limitu a Γ t limita ≈ f ]
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
131 -- limit-uniquenessu = {!!}
511fd37d90ec prove only limit preserving on co yoneda functor's obj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 498
diff changeset
132 --