Mercurial > hg > Members > kono > Proof > category
annotate negnat.agda @ 600:3e2ef72d8d2f
Set Completeness unfinished
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 03 Jun 2017 09:46:59 +0900 |
parents | 2f07f4dd9a6d |
children | 4c0580d9dda4 |
rev | line source |
---|---|
451 | 1 module negnat where |
2 | |
3 | |
4 open import Data.Nat | |
5 open import Relation.Nullary | |
6 open import Data.Empty | |
7 open import Data.Unit | |
8 open import Data.Fin renaming ( suc to fsuc ; zero to fzero ; _+_ to _++_ ) | |
9 open import Relation.Binary.Core | |
10 open import Relation.Binary.PropositionalEquality | |
11 | |
12 | |
13 -- http://stackoverflow.com/questions/22580842/non-trivial-negation-in-agda | |
14 | |
15 | |
16 ℕ-elim : ∀ {p} (P : ℕ → Set p) | |
17 (s : ∀ {n} → P n → P (suc n)) | |
18 (z : P 0) → ∀ n → P n | |
19 ℕ-elim P s z zero = z | |
20 ℕ-elim P s z (suc n) = s (ℕ-elim P s z n) | |
21 | |
452 | 22 -- data ⊥ : Set where |
23 | |
24 -- record ⊤ : Set where | |
25 -- constructor tt | |
26 | |
451 | 27 -- peano : ∀ n → suc n ≡ zero → ⊥ |
28 | |
29 Nope : (m n : ℕ) → Set | |
30 Nope (suc _) zero = ⊥ | |
31 Nope _ _ = ⊤ | |
32 | |
33 nope : ∀ m n → m ≡ n → Nope m n | |
34 nope zero ._ refl = _ | |
35 nope (suc m) ._ refl = _ | |
36 | |
37 peano : ∀ n → suc n ≡ zero → ⊥ | |
38 peano _ p = nope _ _ p | |
39 | |
40 | |
41 J : ∀ {a p} {A : Set a} (P : ∀ (x : A) y → x ≡ y → Set p) | |
42 (f : ∀ x → P x x refl) → ∀ x y → (p : x ≡ y) → P x y p | |
43 J P f x .x refl = f x | |
44 | |
45 Fin-elim : ∀ {p} (P : ∀ n → Fin n → Set p) | |
46 (s : ∀ {n} {fn : Fin n} → P n fn → P (suc n) (fsuc fn)) | |
47 (z : ∀ {n} → P (suc n) fzero) → | |
48 ∀ {n} (fn : Fin n) → P n fn | |
49 Fin-elim P s z fzero = z | |
50 Fin-elim P s z (fsuc x) = s (Fin-elim P s z x) | |
51 | |
452 | 52 Nope1 : ℕ -> Set |
53 Nope1 zero = ⊥ | |
54 Nope1 (suc _) = ⊤ | |
451 | 55 |
453
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
56 Nope0 : ℕ → Set |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
57 Nope0 = ℕ-elim (λ _ → Set) (λ _ → ⊤) ⊥ |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
58 |
451 | 59 bad : Fin 0 → ⊥ |
60 bad = Fin-elim (λ n _ → Nope0 n) (λ _ → _) _ | |
61 | |
62 | |
63 -- http://stackoverflow.com/questions/18347542/agda-how-does-one-obtain-a-value-of-a-dependent-type | |
64 even : ℕ -> Set | |
65 even zero = ⊤ | |
66 even (suc zero) = ⊥ | |
67 even (suc (suc n)) = even n | |
68 | |
69 div : (n : ℕ) -> even n -> ℕ | |
70 div zero p = zero | |
71 div (suc (suc n)) p = suc (div n p) | |
72 div (suc zero) () | |
73 | |
452 | 74 proof : 2 + 3 ≡ suc (suc (suc (suc (suc zero)))) |
451 | 75 proof = refl |
76 | |
77 -- | |
78 -- ¬_ : Set → Set | |
79 -- ¬ A = A → ⊥ | |
80 -- | |
81 -- data Dec (P : Set) : Set where | |
82 -- yes : P → Dec P | |
83 -- no : ¬ P → Dec P | |
84 | |
85 EvenDecidable : Set | |
86 EvenDecidable = ∀ n → Dec (even n) | |
87 | |
88 isEven : EvenDecidable | |
89 isEven zero = yes _ | |
453
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
90 isEven (suc zero) = no (λ ()) |
451 | 91 isEven (suc (suc n)) = isEven n |
92 | |
93 data Bool : Set where | |
94 true false : Bool | |
95 | |
96 if_then_else_ : {A : Set} → Bool → A → A → A | |
97 if true then t else _ = t | |
98 if false then _ else f = f | |
99 | |
100 ⌊_⌋ : {P : Set} → Dec P → Bool | |
101 ⌊ yes _ ⌋ = true | |
102 ⌊ no _ ⌋ = false | |
103 | |
104 bad1 : ∀ n → even n → even (suc n) → ⊥ | |
105 bad1 zero p q = q | |
106 bad1 (suc zero) p q = p | |
107 bad1 (suc (suc n)) p q = bad1 n p q | |
108 | |
109 odd : ∀ n → ¬ even n → even (suc n) | |
110 odd zero p = p _ | |
111 odd (suc zero) p = _ | |
112 odd (suc (suc n)) p = odd n p | |
113 | |
114 g : ℕ → ℕ | |
115 g n with isEven n | |
116 ... | yes e = div n e | |
117 ... | no o = div (suc n) (odd n o) | |
118 | |
119 -- g-bad : ℕ → ℕ | |
120 -- g-bad n = if ⌊ isEven n ⌋ | |
121 -- then (div n {!!}) | |
122 -- else (div (suc n) (odd n {!!})) | |
123 | |
124 | |
125 if-dec_then_else_ : {P A : Set} → Dec P → (P → A) → (¬ P → A) → A | |
126 if-dec yes p then t else _ = t p | |
127 if-dec no ¬p then _ else f = f ¬p | |
128 | |
129 g' : ℕ → ℕ | |
130 g' n = if-dec isEven n | |
131 then (λ e → div n e) | |
132 else (λ o → div (suc n) (odd n o)) | |
133 | |
134 if-syntax = if-dec_then_else_ | |
135 | |
136 syntax if-syntax dec (λ yup → yupCase) (λ nope → nopeCase) | |
137 = if-dec dec then[ yup ] yupCase else[ nope ] nopeCase | |
138 | |
139 g'' : ℕ → ℕ | |
140 g'' n = if-dec isEven n | |
141 then[ e ] div n e | |
142 else[ o ] div (suc n) (odd n o) | |
143 | |
144 | |
145 mod : ℕ -> ℕ | |
146 mod zero = zero | |
147 mod (suc zero) = suc zero | |
148 mod (suc (suc N)) = mod N | |
149 | |
150 proof1 : (n : ℕ ) -> ( if ⌊ isEven n ⌋ then zero else (suc zero) ) ≡ ( mod n ) | |
151 proof1 zero = refl | |
152 proof1 (suc zero) = refl | |
153 proof1 (suc (suc n)) = let open ≡-Reasoning in | |
154 begin | |
155 if ⌊ isEven (suc (suc n)) ⌋ then zero else suc zero | |
156 ≡⟨ cong ( \x -> (if ⌊ x ⌋ then zero else suc zero)) (lemma2 {n} )⟩ | |
157 if ⌊ isEven n ⌋ then zero else suc zero | |
158 ≡⟨ proof1 n ⟩ | |
159 mod n | |
160 ≡⟨ sym (lemma1 {n}) ⟩ | |
161 mod (suc (suc n)) | |
453
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
162 ∎ where |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
163 lemma1 : { n : ℕ } -> mod (suc (suc n )) ≡ mod n |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
164 lemma1 = refl |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
165 lemma2 : { n : ℕ } -> isEven (suc (suc n )) ≡ isEven n |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
166 lemma2 = refl |
451 | 167 |
168 | |
453
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
169 |
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
452
diff
changeset
|
170 |