Mercurial > hg > Members > kono > Proof > category
changeset 452:7ed0045e4adf
negnat
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Feb 2017 22:33:03 +0900 |
parents | 3ee32e4df4c7 |
children | 3c2ce4474d92 |
files | negnat.agda |
diffstat | 1 files changed, 9 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/negnat.agda Tue Feb 28 12:38:23 2017 +0900 +++ b/negnat.agda Tue Feb 28 22:33:03 2017 +0900 @@ -1,5 +1,3 @@ - - module negnat where @@ -21,6 +19,11 @@ ℕ-elim P s z zero = z ℕ-elim P s z (suc n) = s (ℕ-elim P s z n) +-- data ⊥ : Set where + +-- record ⊤ : Set where +-- constructor tt + -- peano : ∀ n → suc n ≡ zero → ⊥ Nope : (m n : ℕ) → Set @@ -49,8 +52,9 @@ Nope0 : ℕ → Set Nope0 = ℕ-elim (λ _ → Set) (λ _ → ⊤) ⊥ --- Nope1 zero = ⊥ --- Nope1 (suc _) = ⊤ +Nope1 : ℕ -> Set +Nope1 zero = ⊥ +Nope1 (suc _) = ⊤ bad : Fin 0 → ⊥ bad = Fin-elim (λ n _ → Nope0 n) (λ _ → _) _ @@ -68,10 +72,9 @@ div (suc (suc n)) p = suc (div n p) div (suc zero) () -proof : (suc (suc zero) + (suc (suc (suc zero)))) ≡ (suc (suc (suc (suc (suc zero))))) +proof : 2 + 3 ≡ suc (suc (suc (suc (suc zero)))) proof = refl --- data ⊥ : Set where -- -- ¬_ : Set → Set -- ¬ A = A → ⊥