annotate system-f.agda @ 600:3e2ef72d8d2f

Set Completeness unfinished
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 03 Jun 2017 09:46:59 +0900
parents c483374f542b
children 6b4bd02efd80
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
1 {-# OPTIONS --universe-polymorphism #-}
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
2
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 open import Level
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 open import Relation.Binary.PropositionalEquality
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5
330
fa018eb1723e remove module level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 329
diff changeset
6 module system-f where
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
8 Bool : {l : Level} → Set l → Set l
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
9 Bool {l} = λ(X : Set l) → X → X → X
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
11 T : {l : Level} (X : Set l) → Bool X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
12 T X = λ(x y : X) → x
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
14 F : {l : Level} (X : Set l) → Bool X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
15 F X = λ(x y : X) → y
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
17 D : {l : Level} → {U : Set l} → U → U → Bool U → U
331
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 330
diff changeset
18 D u v t = t u v
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
20 lemma04 : {l : Level} { U : Set l} {u v : U} → D {_} {U} u v (T U ) ≡ u
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 lemma04 = refl
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
23 lemma05 : {l : Level} { U : Set l} {u v : U} → D {_} {U} u v (F U ) ≡ v
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 lemma05 = refl
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
26 _×_ : {l : Level} → Set l → Set l → Set (suc l)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
27 _×_ {l} U V = {X : Set l} → (U → V → X) → X
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
28
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
29 <_,_> : {l : Level} {U V : Set l} → U → V → (U × V)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
30 <_,_> {l} {U} {V} u v = λ{X} → λ(x : U → V → X) → x u v
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
32 π1 : {l : Level} {U V : Set l} → (U × V) → U
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
33 π1 {l} {U} {V} t = t {U} (λ(x : U) → λ(y : V) → x)
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
35 π2 : {l : Level} {U V : Set l} → (U × V) → V
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
36 π2 {l} {U} {V} t = t {V} (λ(x : U) → λ(y : V) → y)
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
38 lemma06 : {l : Level} {U V : Set l } → {u : U } → {v : V} → π1 ( < u , v > ) ≡ u
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39 lemma06 = refl
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
41 lemma07 : {l : Level} {U V : Set l } → {u : U } → {v : V} → π2 ( < u , v > ) ≡ v
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 lemma07 = refl
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
44 hoge : {l : Level} {U V : Set l} → U → V → (U × V)
315
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 hoge u v = < u , v >
0d7fa6fc5979 System T and System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
47 -- lemma08 : {l : Level} {U V : Set l } → {u : U } → (t : U × V) → < π1 t , π2 t > ≡ t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
48 -- lemma08 t = refl
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
49
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
50 -- Emp definision is still wrong...
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
51
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
52 --record Emp {l : Level } : Set (suc l) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
53 -- field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
54 -- ε : (U : Set l ) → U
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
55 -- e1 : {U V : Set l} → (u : U) → (ε (U → V) ) u ≡ ε V
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
56 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
57 --open Emp
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
58
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
59 --lemma103 : {l : Level} {U V : Set l} → (u : U) → (t : Emp ) → (ε t (U → V) ) u ≡ ε t V
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
60 --lemma103 u t = e1 t u
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
61
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
62 Emp : {l : Level } → Set (suc l)
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
63 Emp {l} = {X : Set l} → X
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
64
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
65 -- ε : {l : Level} {U : Set l} → Emp {l} → U
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
66 -- ε {l} {U} t = t U
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
67
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
68 -- lemma103 : {l : Level} {U V : Set l} → (u : U) → (t : Emp {l} ) → (ε {l} {U → V} t) u ≡ ε {l} {V} t
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
69 -- lemma103 u t = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
70
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
71 -- lemma09 : {l : Level} {U : Set l} → (t : Emp ) → ε {l} {U} (ε {_} {Emp} t) ≡ ε {_} {U} t
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
72 -- lemma09 t = refl
321
33c6dd3598ca Emp with yellow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 320
diff changeset
73
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
74 -- lemma10 : {l : Level} {U V X : Set l} → (t : Emp ) → U × V
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
75 -- lemma10 {l} {U} {V} t = ε {suc l} {U × V} t
327
7645185970f2 fix Emp commnet
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 326
diff changeset
76
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
77 -- lemma100 : {l : Level} {U V X : Set l} → (t : Emp ) → Emp
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
78 -- lemma100 {l} {U} {V} t = ε {_} {U} t
321
33c6dd3598ca Emp with yellow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 320
diff changeset
79
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
80 -- lemma101 : {l : Level} {U V : Set l} → (t : Emp ) → π1 (ε {suc l} {U × V} t) ≡ ε {l} {U} t
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
81 -- lemma101 t = refl
319
5791b7b04820 Emp in System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 318
diff changeset
82
350
c483374f542b try equalizer from limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 349
diff changeset
83 -- lemma102 : {l : Level} {U V : Set l} → (t : Emp ) → π2 (ε {_} {U × V} t) ≡ ε {_} {V} t
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
84 -- lemma102 t = refl
321
33c6dd3598ca Emp with yellow
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 320
diff changeset
85
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
86
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
87 _+_ : {l : Level} → Set l → Set l → Set (suc l)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
88 _+_ {l} U V = {X : Set l} → ( U → X ) → (V → X) → X
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
89
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
90 ι1 : {l : Level } {U V : Set l} → U → U + V
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
91 ι1 {l} {U} {V} u = λ{X} → λ(x : U → X) → λ(y : V → X ) → x u
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
92
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
93 ι2 : {l : Level } {U V : Set l} → V → U + V
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
94 ι2 {l} {U} {V} v = λ{X} → λ(x : U → X) → λ(y : V → X ) → y v
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
95
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
96 δ : {l : Level} { U V R S : Set l } → (R → U) → (S → U) → ( R + S ) → U
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
97 δ {l} {U} {V} {R} {S} u v t = t {U} (λ(x : R) → u x) ( λ(y : S) → v y)
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
98
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
99 lemma11 : {l : Level} { U V R S : Set _ } → (u : R → U ) (v : S → U ) → (r : R) → δ {l} {U} {V} {R} {S} u v ( ι1 r ) ≡ u r
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
100 lemma11 u v r = refl
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
101
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
102 lemma12 : {l : Level} { U V R S : Set _ } → (u : R → U ) (v : S → U ) → (s : S) → δ {l} {U} {V} {R} {S} u v ( ι2 s ) ≡ v s
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
103 lemma12 u v s = refl
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
104
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
105
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
106 _××_ : {l : Level} → Set (suc l) → Set l → Set (suc l)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
107 _××_ {l} U V = {X : Set l} → (U → V → X) → X
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
108
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
109 <<_,_>> : {l : Level} {U : Set (suc l) } {V : Set l} → U → V → (U ×× V)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
110 <<_,_>> {l} {U} {V} u v = λ{X} → λ(x : U → V → X) → x u v
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
111
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
112
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
113 Int : {l : Level } ( X : Set l ) → Set l
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
114 Int X = X → ( X → X ) → X
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
115
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
116 Zero : {l : Level } → { X : Set l } → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
117 Zero {l} {X} = λ(x : X ) → λ(y : X → X ) → x
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
118
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
119 S : {l : Level } → { X : Set l } → Int X → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
120 S {l} {X} t = λ(x : X) → λ(y : X → X ) → y ( t x y )
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
121
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
122 n0 : {l : Level} {X : Set l} → Int X
331
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 330
diff changeset
123 n0 = Zero
326
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 325
diff changeset
124
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
125 n1 : {l : Level } → { X : Set l } → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
126 n1 {_} {X} = λ(x : X ) → λ(y : X → X ) → y x
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
127
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
128 n2 : {l : Level } → { X : Set l } → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
129 n2 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y x)
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
130
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
131 n3 : {l : Level } → { X : Set l } → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
132 n3 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y (y x))
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
133
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
134 n4 : {l : Level } → { X : Set l } → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
135 n4 {_} {X} = λ(x : X ) → λ(y : X → X ) → y (y (y (y x)))
333
26f44a4fa494 factorial still have a problem
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 332
diff changeset
136
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
137 lemma13 : {l : Level } → { X : Set l } → S (S (Zero {_} {X})) ≡ n2
331
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 330
diff changeset
138 lemma13 = refl
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 321
diff changeset
139
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
140 It : {l : Level} {U : Set l} → U → ( U → U ) → Int U → U
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
141 It u f t = t u f
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
142
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
143 ItInt : {l : Level} {X : Set l} → Int X → (X → Int X ) → ( Int X → Int X ) → Int X → Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
144 ItInt {l} {X} u g f t = λ z s → t (u z s) ( λ (w : X) → (f (g w)) z s )
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
145
345
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
146 R : {l : Level} { U X : Set l} → U → ( U → Int X → U ) → Int _ → U
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
147 R {l} {U} {X} u v t = π1 ( It {suc l} {U × Int X} (< u , Zero >) (λ (x : U × Int X) → < v (π1 x) (π2 x) , S (π2 x) > ) t )
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
148
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
149 -- bad adder which modifies input type
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
150 add' : {l : Level} {X : Set l} → Int (Int X) → Int X → Int X
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
151 add' x y = It y S x
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
152
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
153 add : {l : Level} {X : Set l} → Int X → Int X → Int X
344
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
154 add x y = λ z s → x (y z s) s
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
155
345
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
156 add'' : {l : Level} {X : Set l} → Int X → Int X → Int X
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
157 add'' x y = ItInt y (\w z s -> w )S x
345
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
158
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
159 lemma22 : {l : Level} {X : Set l} ( x y : Int X ) → add x y ≡ add'' x y
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
160 lemma22 x y = refl
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
161
339
716f85bc7259 assoc in sysem-T
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
162 -- bad adder which modifies input type
716f85bc7259 assoc in sysem-T
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
163 mul' : {l : Level } {X : Set l} → Int X → Int (Int X) → Int X
716f85bc7259 assoc in sysem-T
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
164 mul' {l} {X} x y = It Zero (add x) y
324
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
165
339
716f85bc7259 assoc in sysem-T
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
166 mul : {l : Level } {X : Set l} → Int X → Int X → Int X
344
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
167 mul {l} {X} x y = λ z s → x z ( λ w → y w s )
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
168
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
169 mul'' : {l : Level } {X : Set l} → Int X → Int X → Int X
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
170 mul'' {l} {X} x y = ItInt Zero (\w z s -> w) (add'' x) y
338
2f21eb997559 sym of sum and mul in system T
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 337
diff changeset
171
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
172 fact : {l : Level} {X : Set l} → Int _ → Int X
339
716f85bc7259 assoc in sysem-T
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
173 fact {l} {X} n = R (S Zero) (λ z → λ w → mul z (S w)) n
326
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 325
diff changeset
174
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
175 lemma13' : {l : Level} {X : Set l} → fact {l} {X} n4 ≡ mul n4 ( mul n2 n3)
334
357d3114c9b5 add : Int X -> Int X -> Int X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 333
diff changeset
176 lemma13' = refl
324
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
177
345
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
178 -- lemma23 : {l : Level} {X : Set l} ( x y : Int X ) → mul x y ≡ mul'' x y
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
179 -- lemma23 x y = {!!}
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
180
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
181 lemma24 : {l : Level } {X : Set l} → mul {l} {X} n4 n3 ≡ mul'' {l} {X} n3 n4
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
182 lemma24 = refl
17acb62419ac fix on System F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 344
diff changeset
183
344
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
184
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
185 -- lemma14 : {l : Level} {X : Set l} → (x y : Int X) → mul x y ≡ mul y x
326
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 325
diff changeset
186 -- lemma14 x y = It {!!} {!!} {!!}
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
187
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
188 lemma15 : {l : Level} {X : Set l} (x y : Int X) → mul {l} {X} n2 n3 ≡ mul {l} {X} n3 n2
324
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
189 lemma15 x y = refl
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
190
344
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
191 lemma15' : {l : Level} {X : Set l} (x y : Int X) → mul'' {l} {X} n2 n3 ≡ mul'' {l} {X} n3 n2
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
192 lemma15' x y = refl
45b973f5d89e ItInt on system F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 339
diff changeset
193
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
194 lemma16 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int X → U ) → R u v Zero ≡ u
324
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
195 lemma16 u v = refl
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
196
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
197 -- lemma17 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int → U ) → (t : Int ) → R u v (S t) ≡ v ( R u v t ) t
324
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
198 -- lemma17 u v t = refl
6e9bca4e67a3 R lemma
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 323
diff changeset
199
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
200 -- postulate lemma17 : {l : Level} {X U : Set l} → (u : U ) → (v : U → Int X → U ) → (t : Int X ) → R u v (S t) ≡ v ( R u v t ) t
316
7a3229b32b3c Emp and Sum first try
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 315
diff changeset
201
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
202 List : {l : Level} (U X : Set l) → Set l
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
203 List {l} = λ( U X : Set l) → X → ( U → X → X ) → X
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
204
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
205 Nil : {l : Level} {U : Set l} {X : Set l} → List U X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
206 Nil {l} {U} {X} = λ(x : X) → λ(y : U → X → X) → x
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
207
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
208 Cons : {l : Level} {U : Set l} {X : Set l} → U → List U X → List U X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
209 Cons {l} {U} {X} u t = λ(x : X) → λ(y : U → X → X) → y u (t x y )
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
210
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
211 l0 : {l : Level} {X X' : Set l} → List (Int X) (X')
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
212 l0 = Nil
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
213
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
214 l1 : {l : Level} {X X' : Set l} → List (Int X) (X')
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
215 l1 = Cons n1 Nil
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
216
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
217 l2 : {l : Level} {X X' : Set l} → List (Int X) (X')
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
218 l2 = Cons n2 l1
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
219
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
220 l3 : {l : Level} {X X' : Set l} → List (Int X) (X')
330
fa018eb1723e remove module level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 329
diff changeset
221 l3 = Cons n3 l2
fa018eb1723e remove module level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 329
diff changeset
222
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
223 -- λ x x₁ y → y x (y x (y x x₁))
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
224 l4 : {l : Level} {X X' : Set l} → Int X → List (Int X) (X')
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
225 l4 x = Cons x (Cons x (Cons x Nil))
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
226
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
227 ListIt : {l : Level} {U X : Set l} → X → ( U → X → X ) → List U X → X
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
228 ListIt w f t = t w f
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
229
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
230 LListIt : {l : Level} {U X : Set l} → List U X → (X → List U X) → ( U → List U X → List U X ) → List U X → List U X
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
231 LListIt {l} {U} {X} w g f t = λ x y → t (w x y) (λ (x' : U) (y' : X) → (f x' (g y')) x y )
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
232
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
233 -- Cdr : {l : Level} {U : Set l} {X : Set l} → List U X → List U X
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
234 -- Cdr w = λ x → λ y → w x (λ x y → y)
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
235
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
236 -- lemma181 :{l : Level} {U : Set l} {X : Set l} → Car Zero l2 ≡ n2
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
237 -- lemma181 = refl
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
238
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
239 -- lemma182 :{l : Level} {U : Set l} {X : Set l} → Cdr l2 ≡ l1
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
240 -- lemma182 = refl
323
d22a39e155c4 fact error on R
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 322
diff changeset
241
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
242 Nullp : {l : Level} {U : Set (suc l)} { X : Set (suc l)} → List U (Bool X) → Bool X
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
243 Nullp {_} {_} {X} list = ListIt (T X) (λ u w → (F X)) list
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
244
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
245 -- bad append
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
246 Append' : {l : Level} {U X : Set l} → List U (List U X) → List U X → List U X
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
247 Append' {_} {_} {X} x y = ListIt y Cons x
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
248
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
249 Append : {l : Level} {U : Set l} {X : Set l} → List U X → List U X → List U X
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
250 Append x y = λ n c → x (y n c) c
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
251
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
252 Append'' : {l : Level} {U X : Set l} → List U X → List U X → List U X
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
253 Append'' {_} {_} {X} x y = LListIt y (\e n c -> e) Cons x
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
254
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
255 lemma18 :{l : Level} {U : Set l} {X : Set l} → Append {_} {Int U} {X} l1 l2 ≡ Cons n1 (Cons n2 (Cons n1 Nil))
328
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 327
diff changeset
256 lemma18 = refl
326
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 325
diff changeset
257
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
258 lemma18' :{l : Level} {U : Set l} {X : Set l} → Append'' {_} {Int U} {X} l1 l2 ≡ Cons n1 (Cons n2 (Cons n1 Nil))
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
259 lemma18' = refl
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
260
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
261 lemma18'' :{l : Level} {U : Set l} {X : Set l} → Append'' {_} {Int U} {X} ≡ Append
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
262 lemma18'' = refl
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
263
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
264 Reverse : {l : Level} {U : Set l} {X : Set l} → List U (List U X) → List U X
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
265 Reverse {l} {U} {X} x = ListIt Nil ( λ u w → Append w (Cons u Nil) ) x
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
266 -- λ x → x (λ x₁ y → x₁) (λ u w s t → w (t u s) t)
330
fa018eb1723e remove module level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 329
diff changeset
267
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
268 lemma19 :{l : Level} {U : Set l} {X : Set l} → Reverse {_} {Int U} {X} l3 ≡ Cons n1 (Cons n2 (Cons n3 Nil))
330
fa018eb1723e remove module level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 329
diff changeset
269 lemma19 = refl
fa018eb1723e remove module level
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 329
diff changeset
270
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
271 Reverse' : {l : Level} {U : Set l} {X : Set l} → List U X → List U X
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
272 Reverse' {l} {U} {X} x = LListIt Nil (\e n c -> e) ( λ u w → Append w (Cons u Nil) ) x
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
273 -- λ x x₁ y → x x₁ (λ x' y' → y')
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
274
348
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 347
diff changeset
275 -- lemma19' :{l : Level} {U : Set l} {X : Set l} → Reverse' {_} {Int U} {X} l3 ≡ Cons n1 (Cons n2 (Cons n3 Nil))
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
276 -- lemma19' = refl
347
87ad542e4145 list try ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 345
diff changeset
277
336
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
278 Tree : {l : Level} → Set l → Set l → Set l
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 335
diff changeset
279 Tree {l} = λ( U X : Set l) → X → ( (U → X) → X ) → X
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
280
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
281 NilTree : {l : Level} {U : Set l} {X : Set l} → Tree U X
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
282 NilTree {l} {U} {X} = λ(x : X) → λ(y : (U → X) → X) → x
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
283
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
284 Collect : {l : Level} {U : Set l} {X : Set l} → (U → Tree U X ) → Tree U X
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
285 Collect {l} {U} {X} f = λ(x : X) → λ(y : (U → X) → X) → y (λ(z : U) → f z x y )
325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 324
diff changeset
286
349
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 348
diff changeset
287 TreeIt : {l : Level} {U X X : Set l} → X → ( (U → X) → X ) → Tree U X → X
331
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 330
diff changeset
288 TreeIt w h t = t w h
337
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
289
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
290 t0 : {l : Level} {X X' : Set l} → Tree (Bool X) X'
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
291 t0 {l} {X} {X'} = NilTree
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
292
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
293 t1 : {l : Level} {X X' : Set l} → Tree (Bool X) X'
203593ff1e60 add Tree example ( not yet worked )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 336
diff changeset
294 t1 {l} {X} {X'} = NilTree -- Collect (λ b → D b NilTree (λ c → Collect NilTree NilTree ))