Mercurial > hg > Members > kono > Proof > category
changeset 327:7645185970f2
fix Emp commnet
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Mar 2014 08:53:02 +0700 |
parents | c299dd508263 |
children | d6eb3520ccf8 |
files | system-f.agda |
diffstat | 1 files changed, 14 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/system-f.agda Fri Mar 21 17:30:46 2014 +0700 +++ b/system-f.agda Sat Mar 22 08:53:02 2014 +0700 @@ -67,28 +67,31 @@ -- Emp definision is still wrong... -Emp : ∀{l : Level} {X : Set l} -> Set l -Emp {l} = \{X : Set l} -> X +Emp : {l : Level} {X : Set l} -> Set l +Emp {l} = \{X : Set l} -> X --- ε : {l : Level} {U : Set l} -> Emp -> Emp --- ε {l} {U} t = t {l} {U} +-- ε : {l : Level} (U : Set l) {l' : Level} {U' : Set l'} -> Emp -> Emp +-- ε {l} U t = t --- lemma09 : {l : Level} {U : Set l} -> (t : Emp) -> ε U (ε Emp t) ≡ ε U t +-- lemma09 : {l : Level} {U : Set l} {l' : Level} {U' : Set l} -> (t : Emp {l} {U} ) -> ε U (ε Emp t) ≡ ε U t -- lemma09 t = refl --- lemma10 : {l : Level} {U V X : Set l} -> (t : Emp ) -> (U × V) --- lemma10 {l} {U} {V} t = ε (U × V) t +-- lemma10 : {l : Level} {U V X : Set l} -> (t : Emp {_} {U × V}) -> U × V +-- lemma10 {l} {U} {V} t = ε (U × V) t --- lemma100 : {l : Level} {U V X : Set l} -> (t : Emp ) -> Emp +-- lemma10' : {l : Level} {U V X : Set l} -> (t : Emp {_} {U × V}) -> Emp +-- lemma10' {l} {U} {V} {X} t = ε (U × V) t + +-- lemma100 : {l : Level} {U V X : Set l} -> (t : Emp {_} {U}) -> Emp -- lemma100 {l} {U} {V} t = ε U t --- lemma101 : {l k : Level} {U V : Set l} -> (t : Emp ) -> π1 (ε (U × V) t) ≡ ε U t +-- lemma101 : {l k : Level} {U V : Set l} -> (t : Emp {_} {U × V}) -> π1 (ε (U × V) t) ≡ ε U t -- lemma101 t = refl --- lemma102 : {l k : Level} {U V : Set l} -> (t : Emp ) -> π2 (ε (U × V) t) ≡ ε V t +-- lemma102 : {l k : Level} {U V : Set l} -> (t : Emp {_} {U × V}) -> π2 (ε (U × V) t) ≡ ε V t -- lemma102 t = refl --- lemma103 : {l : Level} {U V : Set l} -> (u : U) -> (t : Emp) -> ε (U -> V) u ≡ ε V t +-- lemma103 : {l : Level} {U V : Set l} -> (u : U) -> (t : Emp {l} {_} ) -> (ε (U -> V) t) u ≡ ε V t -- lemma103 u t = refl _+_ : Set l -> Set l -> Set (suc l)