Mercurial > hg > Members > kono > Proof > category
annotate equalizer.agda @ 210:51c57efe89b9
α b1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 22:21:51 +0900 |
parents | 4e138cc953f3 |
children | 8c738327df19 |
rev | line source |
---|---|
205 | 1 --- |
2 -- | |
3 -- Equalizer | |
4 -- | |
208 | 5 -- e f |
205 | 6 -- c --------> a ----------> b |
208 | 7 -- ^ . ----------> |
205 | 8 -- | . g |
208 | 9 -- |k . |
10 -- | . h | |
205 | 11 -- d |
12 -- | |
13 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
14 ---- | |
15 | |
16 open import Category -- https://github.com/konn/category-agda | |
17 open import Level | |
18 open import Category.Sets | |
19 module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where | |
20 | |
21 open import HomReasoning | |
22 open import cat-utility | |
23 | |
209 | 24 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
205 | 25 field |
209 | 26 e : Hom A c a |
27 ef=eg : A [ A [ f o e ] ≈ A [ g o e ] ] | |
28 k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c | |
29 ke=h : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → A [ A [ e o k {d} h eq ] ≈ h ] | |
30 uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → {k' : Hom A d c } → A [ A [ e o k' ] ≈ h ] → | |
31 A [ k {d} h eq ≈ k' ] | |
32 equalizer : Hom A c a | |
33 equalizer = e | |
206 | 34 |
209 | 35 record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
206 | 36 field |
210 | 37 α : (f : Hom A a b) → (g : Hom A a b ) → Hom A c a |
38 -- γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e | |
39 -- δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c | |
40 b1 : {e : Obj A } → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] | |
41 -- b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] | |
42 -- b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] | |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
43 -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] |
210 | 44 -- b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
45 -- A [ α f g o β f g h ] ≈ h |
210 | 46 -- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e |
47 -- β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] | |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
48 |
209 | 49 open Equalizer |
50 open EqEqualizer | |
51 | |
52 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g | |
53 lemma-equ1 A {a} {b} {c} f g eqa = record { | |
210 | 54 α = λ f g → e eqa ; -- Hom A c a |
55 -- γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e | |
56 -- δ = λ {a} {b} f → {!!} ; -- Hom A a c | |
57 b1 = ef=eg eqa -- ; | |
58 -- b2 = {!!} ; | |
59 -- b3 = {!!} ; | |
60 -- b4 = {!!} | |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
61 } |