Mercurial > hg > Members > kono > Proof > category
changeset 210:51c57efe89b9
α b1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 22:21:51 +0900 |
parents | 4e138cc953f3 |
children | 8c738327df19 |
files | equalizer.agda |
diffstat | 1 files changed, 16 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 02 21:59:37 2013 +0900 +++ b/equalizer.agda Mon Sep 02 22:21:51 2013 +0900 @@ -34,28 +34,28 @@ record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field - α : {e a : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a - γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e - δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c - b1 : {e : Obj A } → A [ A [ f o α {e} {a} f g ] ≈ A [ g o α {e} {a} f g ] ] - b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] - b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] + α : (f : Hom A a b) → (g : Hom A a b ) → Hom A c a +-- γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e +-- δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c + b1 : {e : Obj A } → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] +-- b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] +-- b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] - b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] +-- b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- A [ α f g o β f g h ] ≈ h - β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e - β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] +-- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e +-- β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] open Equalizer open EqEqualizer lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g lemma-equ1 A {a} {b} {c} f g eqa = record { - α = λ {e'} {a} f g → ? ; -- e' -> c c -> a, Hom A e' a - γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e - δ = λ {a} {b} f → {!!} ; -- Hom A a c - b1 = {!!} ; - b2 = {!!} ; - b3 = {!!} ; - b4 = {!!} + α = λ f g → e eqa ; -- Hom A c a +-- γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e +-- δ = λ {a} {b} f → {!!} ; -- Hom A a c + b1 = ef=eg eqa -- ; +-- b2 = {!!} ; +-- b3 = {!!} ; +-- b4 = {!!} }