Mercurial > hg > Members > kono > Proof > category
annotate free-monoid.agda @ 408:b265e02b0e0b
if enumarate all possible combination in assoc, it'll pass.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 22 Mar 2016 15:01:47 +0900 |
parents | d8cb7f9c7980 |
children | 3e44951b9bdb |
rev | line source |
---|---|
167
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
1 -- Free Monoid and it's Universal Mapping |
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
2 ---- using Sets and forgetful functor |
155 | 3 |
162 | 4 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
5 | |
154 | 6 open import Category -- https://github.com/konn/category-agda |
7 open import Level | |
8 module free-monoid { c c₁ c₂ ℓ : Level } where | |
9 | |
10 open import Category.Sets | |
11 open import Category.Cat | |
12 open import HomReasoning | |
13 open import cat-utility | |
14 open import Relation.Binary.Core | |
178 | 15 open import universal-mapping |
342 | 16 open import Relation.Binary.PropositionalEquality |
154 | 17 |
162 | 18 -- from https://github.com/danr/Agda-projects/blob/master/Category-Theory/FreeMonoid.agda |
154 | 19 |
342 | 20 open import Algebra.FunctionProperties using (Op₁; Op₂) |
21 open import Algebra.Structures | |
22 open import Data.Product | |
23 | |
24 | |
25 record ≡-Monoid : Set (suc c) where | |
26 infixr 9 _∙_ | |
27 field | |
28 Carrier : Set c | |
29 _∙_ : Op₂ Carrier | |
30 ε : Carrier | |
31 isMonoid : IsMonoid _≡_ _∙_ ε | |
32 | |
33 open ≡-Monoid | |
34 | |
35 ≡-cong = Relation.Binary.PropositionalEquality.cong | |
36 | |
37 -- module ≡-reasoning (m : ≡-Monoid ) where | |
38 | |
154 | 39 infixr 40 _::_ |
156 | 40 data List (A : Set c ) : Set c where |
154 | 41 [] : List A |
254 | 42 _::_ : A → List A → List A |
154 | 43 |
44 | |
45 infixl 30 _++_ | |
254 | 46 _++_ : {A : Set c } → List A → List A → List A |
154 | 47 [] ++ ys = ys |
48 (x :: xs) ++ ys = x :: (xs ++ ys) | |
49 | |
254 | 50 list-id-l : { A : Set c } → { x : List A } → [] ++ x ≡ x |
156 | 51 list-id-l {_} {_} = refl |
254 | 52 list-id-r : { A : Set c } → { x : List A } → x ++ [] ≡ x |
156 | 53 list-id-r {_} {[]} = refl |
254 | 54 list-id-r {A} {x :: xs} = ≡-cong ( λ y → x :: y ) ( list-id-r {A} {xs} ) |
55 list-assoc : {A : Set c} → { xs ys zs : List A } → | |
156 | 56 ( xs ++ ( ys ++ zs ) ) ≡ ( ( xs ++ ys ) ++ zs ) |
57 list-assoc {_} {[]} {_} {_} = refl | |
254 | 58 list-assoc {A} {x :: xs} {ys} {zs} = ≡-cong ( λ y → x :: y ) |
156 | 59 ( list-assoc {A} {xs} {ys} {zs} ) |
254 | 60 list-o-resp-≈ : {A : Set c} → {f g : List A } → {h i : List A } → |
156 | 61 f ≡ g → h ≡ i → (h ++ f) ≡ (i ++ g) |
62 list-o-resp-≈ {A} refl refl = refl | |
254 | 63 list-isEquivalence : {A : Set c} → IsEquivalence {_} {_} {List A } _≡_ |
156 | 64 list-isEquivalence {A} = -- this is the same function as A's equivalence but has different types |
65 record { refl = refl | |
66 ; sym = sym | |
67 ; trans = trans | |
68 } | |
154 | 69 |
70 | |
342 | 71 _<_∙_> : (m : ≡-Monoid) → Carrier m → Carrier m → Carrier m |
72 m < x ∙ y > = _∙_ m x y | |
154 | 73 |
342 | 74 infixr 9 _<_∙_> |
154 | 75 |
76 record Monomorph ( a b : ≡-Monoid ) : Set (suc c) where | |
77 field | |
254 | 78 morph : Carrier a → Carrier b |
154 | 79 identity : morph (ε a) ≡ ε b |
342 | 80 homo : ∀{x y} → morph ( a < x ∙ y > ) ≡ b < morph x ∙ morph y > |
154 | 81 |
82 open Monomorph | |
83 | |
254 | 84 _+_ : { a b c : ≡-Monoid } → Monomorph b c → Monomorph a b → Monomorph a c |
155 | 85 _+_ {a} {b} {c} f g = record { |
254 | 86 morph = λ x → morph f ( morph g x ) ; |
154 | 87 identity = identity1 ; |
168 | 88 homo = homo1 |
154 | 89 } where |
90 identity1 : morph f ( morph g (ε a) ) ≡ ε c | |
342 | 91 identity1 = let open ≡-Reasoning in begin |
92 morph f (morph g (ε a)) | |
93 ≡⟨ ≡-cong (morph f ) ( identity g ) ⟩ | |
94 morph f (ε b) | |
95 ≡⟨ identity f ⟩ | |
96 ε c | |
97 ∎ | |
98 homo1 : ∀{x y} → morph f ( morph g ( a < x ∙ y > )) ≡ ( c < (morph f (morph g x )) ∙(morph f (morph g y) ) > ) | |
99 homo1 {x} {y} = let open ≡-Reasoning in begin | |
100 morph f (morph g (a < x ∙ y >)) | |
101 ≡⟨ ≡-cong (morph f ) ( homo g) ⟩ | |
102 morph f (b < morph g x ∙ morph g y >) | |
103 ≡⟨ homo f ⟩ | |
104 c < morph f (morph g x) ∙ morph f (morph g y) > | |
105 ∎ | |
154 | 106 |
254 | 107 M-id : { a : ≡-Monoid } → Monomorph a a |
108 M-id = record { morph = λ x → x ; identity = refl ; homo = refl } | |
154 | 109 |
254 | 110 _==_ : { a b : ≡-Monoid } → Monomorph a b → Monomorph a b → Set c |
155 | 111 _==_ f g = morph f ≡ morph g |
112 | |
168 | 113 isMonoids : IsCategory ≡-Monoid Monomorph _==_ _+_ (M-id) |
114 isMonoids = record { isEquivalence = isEquivalence1 | |
155 | 115 ; identityL = refl |
116 ; identityR = refl | |
117 ; associative = refl | |
254 | 118 ; o-resp-≈ = λ {a} {b} {c} {f} {g} {h} {i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} |
155 | 119 } |
120 where | |
121 o-resp-≈ : {a b c : ≡-Monoid } {f g : Monomorph a b } → {h i : Monomorph b c } → | |
122 f == g → h == i → (h + f) == (i + g) | |
123 o-resp-≈ {A} refl refl = refl | |
254 | 124 isEquivalence1 : { a b : ≡-Monoid } → IsEquivalence {_} {_} {Monomorph a b} _==_ |
155 | 125 isEquivalence1 = -- this is the same function as A's equivalence but has different types |
126 record { refl = refl | |
127 ; sym = sym | |
128 ; trans = trans | |
129 } | |
168 | 130 Monoids : Category _ _ _ |
131 Monoids = | |
155 | 132 record { Obj = ≡-Monoid |
133 ; Hom = Monomorph | |
134 ; _o_ = _+_ | |
135 ; _≈_ = _==_ | |
136 ; Id = M-id | |
168 | 137 ; isCategory = isMonoids |
155 | 138 } |
154 | 139 |
156 | 140 A = Sets {c} |
168 | 141 B = Monoids |
154 | 142 |
156 | 143 open Functor |
154 | 144 |
156 | 145 U : Functor B A |
146 U = record { | |
254 | 147 FObj = λ m → Carrier m ; |
148 FMap = λ f → morph f ; | |
156 | 149 isFunctor = record { |
254 | 150 ≈-cong = λ x → x |
156 | 151 ; identity = refl |
152 ; distr = refl | |
153 } | |
154 } | |
154 | 155 |
156 | 156 -- FObj |
254 | 157 list : (a : Set c) → ≡-Monoid |
159 | 158 list a = record { |
159 Carrier = List a | |
342 | 160 ; _∙_ = _++_ |
159 | 161 ; ε = [] |
162 ; isMonoid = record { | |
254 | 163 identity = ( ( λ x → list-id-l {a} ) , ( λ x → list-id-r {a} ) ) ; |
159 | 164 isSemigroup = record { |
254 | 165 assoc = λ x → λ y → λ z → sym ( list-assoc {a} {x} {y} {z} ) |
159 | 166 ; isEquivalence = list-isEquivalence |
254 | 167 ; ∙-cong = λ x → λ y → list-o-resp-≈ y x |
159 | 168 } |
169 } | |
170 } | |
171 | |
254 | 172 Generator : Obj A → Obj B |
156 | 173 Generator s = list s |
174 | |
157
34a152235ddd
solution of universal mapping for free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
175 -- solution |
34a152235ddd
solution of universal mapping for free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
176 |
159 | 177 open UniversalMapping |
158 | 178 |
202
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
179 -- [a,b,c] → f(a) ∙ f(b) ∙ f(c) |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
180 Φ : {a : Obj A } {b : Obj B} ( f : Hom A a (FObj U b) ) → List a → Carrier b |
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
181 Φ {a} {b} f [] = ε b |
342 | 182 Φ {a} {b} f ( x :: xs ) = b < ( f x ) ∙ (Φ {a} {b} f xs ) > |
161 | 183 |
184 solution : (a : Obj A ) (b : Obj B) ( f : Hom A a (FObj U b) ) → Hom B (Generator a ) b | |
185 solution a b f = record { | |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
186 morph = λ (l : List a) → Φ f l ; |
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
187 identity = refl; |
254 | 188 homo = λ {x y} → homo1 x y |
161 | 189 } where |
254 | 190 _*_ : Carrier b → Carrier b → Carrier b |
342 | 191 _*_ f g = b < f ∙ g > |
192 homo1 : (x y : Carrier (Generator a)) → Φ f ( (Generator a) < x ∙ y > ) ≡ (Φ f x) * (Φ {a} {b} f y ) | |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
193 homo1 [] y = sym (proj₁ ( IsMonoid.identity ( isMonoid b) ) (Φ f y)) |
168 | 194 homo1 (x :: xs) y = let open ≡-Reasoning in |
161 | 195 sym ( begin |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
196 (Φ {a} {b} f (x :: xs)) * (Φ f y) |
161 | 197 ≡⟨⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
198 ((f x) * (Φ f xs)) * (Φ f y) |
161 | 199 ≡⟨ ( IsMonoid.assoc ( isMonoid b )) _ _ _ ⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
200 (f x) * ( (Φ f xs) * (Φ f y) ) |
168 | 201 ≡⟨ sym ( (IsMonoid.∙-cong (isMonoid b)) refl (homo1 xs y )) ⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
202 (f x) * ( Φ f ( xs ++ y ) ) |
161 | 203 ≡⟨⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
204 Φ {a} {b} f ( x :: ( xs ++ y ) ) |
161 | 205 ≡⟨⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
206 Φ {a} {b} f ( (x :: xs) ++ y ) |
161 | 207 ≡⟨⟩ |
342 | 208 Φ {a} {b} f ((Generator a) < ( x :: xs) ∙ y > ) |
161 | 209 ∎ ) |
210 | |
162 | 211 eta : (a : Obj A) → Hom A a ( FObj U (Generator a) ) |
254 | 212 eta a = λ ( x : a ) → x :: [] |
162 | 213 |
168 | 214 -- Functional Extensionality Axiom (We cannot prove this in Agda / Coq, just assumming ) |
169
44bf6e78f891
builtin extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
168
diff
changeset
|
215 -- postulate extensionality : { a b : Obj A } {f g : Hom A a b } → (∀ {x} → (f x ≡ g x)) → ( f ≡ g ) |
170
721cf9d9f5e3
use functional extensionality in library
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
169
diff
changeset
|
216 postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c c |
162 | 217 |
159 | 218 FreeMonoidUniveralMapping : UniversalMapping A B U Generator eta |
162 | 219 FreeMonoidUniveralMapping = |
157
34a152235ddd
solution of universal mapping for free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
220 record { |
254 | 221 _* = λ {a b} → λ f → solution a b f ; |
157
34a152235ddd
solution of universal mapping for free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
222 isUniversalMapping = record { |
254 | 223 universalMapping = λ {a b f} → universalMapping {a} {b} {f} ; |
224 uniquness = λ {a b f g} → uniquness {a} {b} {f} {g} | |
157
34a152235ddd
solution of universal mapping for free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
225 } |
159 | 226 } where |
160 | 227 universalMapping : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → FMap U ( solution a b f ) o eta a ≡ f |
159 | 228 universalMapping {a} {b} {f} = let open ≡-Reasoning in |
229 begin | |
160 | 230 FMap U ( solution a b f ) o eta a |
161 | 231 ≡⟨⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
232 ( λ (x : a ) → Φ {a} {b} f (eta a x) ) |
162 | 233 ≡⟨⟩ |
341
33bc037319fa
minor fix on free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
254
diff
changeset
|
234 ( λ (x : a ) → Φ {a} {b} f ( x :: [] ) ) |
162 | 235 ≡⟨⟩ |
342 | 236 ( λ (x : a ) → b < ( f x ) ∙ (Φ {a} {b} f [] ) > ) |
162 | 237 ≡⟨⟩ |
342 | 238 ( λ (x : a ) → b < ( f x ) ∙ ( ε b ) > ) |
254 | 239 ≡⟨ ≡-cong ( λ g → ( ( λ (x : a ) → g x ) )) (extensionality {a} lemma-ext1) ⟩ |
162 | 240 ( λ (x : a ) → f x ) |
241 ≡⟨⟩ | |
242 f | |
243 ∎ where | |
342 | 244 lemma-ext1 : ∀( x : a ) → b < ( f x ) ∙ ( ε b ) > ≡ f x |
169
44bf6e78f891
builtin extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
168
diff
changeset
|
245 lemma-ext1 x = ( proj₂ ( IsMonoid.identity ( isMonoid b) ) ) (f x) |
159 | 246 uniquness : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → |
160 | 247 { g : Hom B (Generator a) b } → (FMap U g) o (eta a ) ≡ f → B [ solution a b f ≈ g ] |
163
bc47179e3c9c
uniqueness continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
162
diff
changeset
|
248 uniquness {a} {b} {f} {g} eq = |
170
721cf9d9f5e3
use functional extensionality in library
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
169
diff
changeset
|
249 extensionality lemma-ext2 where |
254 | 250 lemma-ext2 : ( ∀( x : List a ) → (morph ( solution a b f)) x ≡ (morph g) x ) |
163
bc47179e3c9c
uniqueness continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
162
diff
changeset
|
251 -- (morph ( solution a b f)) [] ≡ (morph g) [] ) |
169
44bf6e78f891
builtin extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
168
diff
changeset
|
252 lemma-ext2 [] = let open ≡-Reasoning in |
164 | 253 begin |
254 (morph ( solution a b f)) [] | |
255 ≡⟨ identity ( solution a b f) ⟩ | |
256 ε b | |
257 ≡⟨ sym ( identity g ) ⟩ | |
258 (morph g) [] | |
259 ∎ | |
169
44bf6e78f891
builtin extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
168
diff
changeset
|
260 lemma-ext2 (x :: xs) = let open ≡-Reasoning in |
164 | 261 begin |
262 (morph ( solution a b f)) ( x :: xs ) | |
168 | 263 ≡⟨ homo ( solution a b f) {x :: []} {xs} ⟩ |
342 | 264 b < ((morph ( solution a b f)) ( x :: []) ) ∙ ((morph ( solution a b f)) xs ) > |
265 ≡⟨ ≡-cong ( λ k → (b < ((morph ( solution a b f)) ( x :: []) ) ∙ k > )) (lemma-ext2 xs ) ⟩ | |
266 b < ((morph ( solution a b f)) ( x :: []) ) ∙((morph g) ( xs )) > | |
267 ≡⟨ ≡-cong ( λ k → ( b < ( k x ) ∙ ((morph g) ( xs )) > )) ( | |
164 | 268 begin |
254 | 269 ( λ x → (morph ( solution a b f)) ( x :: [] ) ) |
170
721cf9d9f5e3
use functional extensionality in library
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
169
diff
changeset
|
270 ≡⟨ extensionality {a} lemma-ext3 ⟩ |
254 | 271 ( λ x → (morph g) ( x :: [] ) ) |
164 | 272 ∎ |
273 ) ⟩ | |
342 | 274 b < ((morph g) ( x :: [] )) ∙((morph g) ( xs )) > |
168 | 275 ≡⟨ sym ( homo g ) ⟩ |
164 | 276 (morph g) ( x :: xs ) |
277 ∎ where | |
254 | 278 lemma-ext3 : ∀( x : a ) → (morph ( solution a b f)) (x :: []) ≡ (morph g) ( x :: [] ) |
169
44bf6e78f891
builtin extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
168
diff
changeset
|
279 lemma-ext3 x = let open ≡-Reasoning in |
166 | 280 begin |
281 (morph ( solution a b f)) (x :: []) | |
282 ≡⟨ ( proj₂ ( IsMonoid.identity ( isMonoid b) )(f x) ) ⟩ | |
283 f x | |
254 | 284 ≡⟨ sym ( ≡-cong (λ f → f x ) eq ) ⟩ |
166 | 285 (morph g) ( x :: [] ) |
286 ∎ | |
287 | |
178 | 288 open NTrans |
289 -- fm-ε b = Φ | |
290 fm-ε : NTrans B B ( ( FunctorF A B FreeMonoidUniveralMapping) ○ U) identityFunctor | |
291 fm-ε = nat-ε A B {U} {Generator} {eta} FreeMonoidUniveralMapping | |
343 | 292 -- TMap = λ a → solution (FObj U a) a (λ x → x ) ; |
293 -- isNTrans = record { | |
294 -- commute = commute1 | |
295 -- } | |
296 -- } where | |
297 -- commute1 : {a b : Obj B} {f : Hom B a b} → let open ≈-Reasoning B renaming (_o_ to _*_ ) in | |
298 -- ( FMap (identityFunctor {_} {_} {_} {B}) f * solution (FObj U a) a (λ x → x) ) ≈ | |
299 -- ( solution (FObj U b) b (λ x → x) * FMap (FunctorF A B FreeMonoidUniveralMapping ○ U) f ) | |
300 -- commute1 {a} {b} {f} = let open ≡-Reasoning in begin | |
301 -- morph ((B ≈-Reasoning.o FMap identityFunctor f) (solution (FObj U a) a (λ x → x))) | |
302 -- ≡⟨ {!!} ⟩ | |
303 -- morph ((B ≈-Reasoning.o solution (FObj U b) b (λ x → x)) (FMap (FunctorF A B FreeMonoidUniveralMapping ○ U) f)) | |
304 -- ∎ | |
305 | |
306 | |
307 fm-η : NTrans A A identityFunctor ( U ○ ( FunctorF A B FreeMonoidUniveralMapping) ) | |
308 fm-η = record { | |
309 TMap = λ a → λ (x : a) → x :: [] ; | |
310 isNTrans = record { | |
311 commute = commute1 | |
312 } | |
313 } where | |
314 commute1 : {a b : Obj A} {f : Hom A a b} → let open ≈-Reasoning A renaming (_o_ to _*_ ) in | |
315 (( FMap (U ○ FunctorF A B FreeMonoidUniveralMapping) f ) * (λ x → x :: []) ) ≈ ( (λ x → x :: []) * (λ z → FMap (identityFunctor {_} {_} {_} {A}) f z ) ) | |
316 commute1 {a} {b} {f} = refl -- λ (x : a ) → f x :: [] | |
317 | |
157
34a152235ddd
solution of universal mapping for free monoid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
156
diff
changeset
|
318 |
202
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
319 open Adjunction |
167
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
320 |
202
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
321 -- A = Sets {c} |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
322 -- B = Monoids |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
323 -- U underline funcotr |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
324 -- F generator = x :: [] |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
325 -- Eta x :: [] |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
326 -- Epsiron morph = Φ |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
327 |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
178
diff
changeset
|
328 adj = UMAdjunction A B U Generator eta FreeMonoidUniveralMapping |
167
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
329 |
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
330 |
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
331 |
c3863043c4a3
Free Monoid and Universal mapping problem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
166
diff
changeset
|
332 |