Mercurial > hg > Members > kono > Proof > category
annotate freyd2.agda @ 733:e8d29695741e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Nov 2017 01:13:13 +0900 |
parents | 7a6ee564e3a8 |
children | 340708e8d54f |
rev | line source |
---|---|
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
3 open import Category.Sets renaming ( _o_ to _*_ ) |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 module freyd2 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 where |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 open import HomReasoning |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import cat-utility |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 open import Relation.Binary.Core |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
11 open import Function |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 ---------- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 -- |
693 | 15 -- A is locally small complete and K{*}↓U has preinitial full subcategory, U is an adjoint functor |
16 -- | |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 -- a : Obj A |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 -- U : A → Sets |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 -- U ⋍ Hom (a,-) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
20 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
21 |
693 | 22 -- A is localy small |
23 postulate ≡←≈ : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y | |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
24 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
25 import Relation.Binary.PropositionalEquality |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
26 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
27 postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
28 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
29 ---- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
30 -- |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
31 -- Hom ( a, - ) is Object mapping in Yoneda Functor |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
32 -- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
33 ---- |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
34 |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
35 open NTrans |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
36 open Functor |
498
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
37 open Limit |
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
38 open IsLimit |
c981a2f0642f
UpreseveLimit detailing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
497
diff
changeset
|
39 open import Category.Cat |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
40 |
616 | 41 Yoneda : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) |
42 Yoneda {c₁} {c₂} {ℓ} A a = record { | |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
43 FObj = λ b → Hom A a b |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
44 ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
45 ; isFunctor = record { |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
46 identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ; |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
47 distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ; |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
48 ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
49 } |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
50 } where |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
51 lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x |
693 | 52 lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≡←≈ A idL |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
53 lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
54 A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x |
693 | 55 lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≡←≈ A ( begin |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
56 A [ A [ g o f ] o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
57 ≈↑⟨ assoc ⟩ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
58 A [ g o A [ f o x ] ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
59 ≈⟨⟩ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
60 ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
61 ∎ ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
62 lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ] |
693 | 63 lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≡←≈ A ( begin |
497
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
64 A [ f o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
65 ≈⟨ resp refl-hom eq ⟩ |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
66 A [ g o x ] |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
67 ∎ ) |
e8b85a05a6b2
add if U is iso to representable functor then preserve limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
68 |
609 | 69 -- Representable U ≈ Hom(A,-) |
502 | 70 |
609 | 71 record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (a : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where |
502 | 72 field |
73 -- FObj U x : A → Set | |
609 | 74 -- FMap U f = Set → Set (locally small) |
502 | 75 -- λ b → Hom (a,b) : A → Set |
76 -- λ f → Hom (a,-) = λ b → Hom a b | |
77 | |
616 | 78 repr→ : NTrans A (Sets {c₂}) U (Yoneda A a ) |
79 repr← : NTrans A (Sets {c₂}) (Yoneda A a) U | |
80 reprId→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (Yoneda A a) x )] | |
609 | 81 reprId← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] |
608 | 82 |
609 | 83 open Representable |
502 | 84 |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
85 _↓_ : { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' } |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
86 → ( F G : Functor A B ) |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
87 → Category (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
88 _↓_ { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} { A } { B } F G = CommaCategory |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
89 where open import Comma1 F G |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
90 |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
91 open Complete |
695 | 92 open HasInitialObject |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
93 open import Comma1 |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
94 open CommaObj |
609 | 95 open LimitPreserve |
608 | 96 |
609 | 97 -- Representable Functor U preserve limit , so K{*}↓U is complete |
610 | 98 -- |
616 | 99 -- Yoneda A b = λ a → Hom A a b : Functor A Sets |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
100 -- : Functor Sets A |
610 | 101 |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
102 YonedaFpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) |
612 | 103 (b : Obj A ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
104 (Γ : Functor I A) (limita : Limit I A Γ) → |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
105 IsLimit I Sets (Yoneda A b ○ Γ) (FObj (Yoneda A b) (a0 limita)) (LimitNat I A Sets Γ (a0 limita) (t0 limita) (Yoneda A b)) |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
106 YonedaFpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record { |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
107 limit = λ a t → ψ a t |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
108 ; t0f=t = λ {a t i} → t0f=t0 a t i |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
109 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t |
610 | 110 } where |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
111 hat0 : NTrans I Sets (K I Sets (FObj (Yoneda A b) (a0 lim))) (Yoneda A b ○ Γ) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
112 hat0 = LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b) |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
113 haa0 : Obj Sets |
616 | 114 haa0 = FObj (Yoneda A b) (a0 lim) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
115 ta : (a : Obj Sets) ( x : a ) ( t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)) → NTrans I A (K I A b ) Γ |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
116 ta a x t = record { TMap = λ i → (TMap t i ) x ; isNTrans = record { commute = commute1 } } where |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
117 commute1 : {a₁ b₁ : Obj I} {f : Hom I a₁ b₁} → |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
118 A [ A [ FMap Γ f o TMap t a₁ x ] ≈ A [ TMap t b₁ x o FMap (K I A b) f ] ] |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
119 commute1 {a₁} {b₁} {f} = let open ≈-Reasoning A in begin |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
120 FMap Γ f o TMap t a₁ x |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
121 ≈⟨⟩ |
616 | 122 ( ( FMap (Yoneda A b ○ Γ ) f ) * TMap t a₁ ) x |
693 | 123 ≈⟨ ≈←≡ ( cong (λ k → k x ) (IsNTrans.commute (isNTrans t)) ) ⟩ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
124 ( TMap t b₁ * ( FMap (K I Sets a) f ) ) x |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
125 ≈⟨⟩ |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
126 ( TMap t b₁ * id1 Sets a ) x |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
127 ≈⟨⟩ |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
128 TMap t b₁ x |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
129 ≈↑⟨ idR ⟩ |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
130 TMap t b₁ x o id1 A b |
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
131 ≈⟨⟩ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
132 TMap t b₁ x o FMap (K I A b) f |
611
b1b5c6b4c570
natural transformation in representable functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
610
diff
changeset
|
133 ∎ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
134 ψ : (X : Obj Sets) ( t : NTrans I Sets (K I Sets X) (Yoneda A b ○ Γ)) |
616 | 135 → Hom Sets X (FObj (Yoneda A b) (a0 lim)) |
136 ψ X t x = FMap (Yoneda A b) (limit (isLimit lim) b (ta X x t )) (id1 A b ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
137 t0f=t0 : (a : Obj Sets ) ( t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)) (i : Obj I) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
138 → Sets [ Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o ψ a t ] ≈ TMap t i ] |
693 | 139 t0f=t0 a t i = let open ≈-Reasoning A in extensionality A ( λ x → ≡←≈ A ( begin |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
140 ( Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o ψ a t ] ) x |
612 | 141 ≈⟨⟩ |
616 | 142 FMap (Yoneda A b) ( TMap (t0 lim) i) (FMap (Yoneda A b) (limit (isLimit lim) b (ta a x t )) (id1 A b )) |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
143 ≈⟨⟩ -- FMap (Hom A b ) f g = A [ f o g ] |
613 | 144 TMap (t0 lim) i o (limit (isLimit lim) b (ta a x t ) o id1 A b ) |
145 ≈⟨ cdr idR ⟩ | |
146 TMap (t0 lim) i o limit (isLimit lim) b (ta a x t ) | |
147 ≈⟨ t0f=t (isLimit lim) ⟩ | |
148 TMap (ta a x t) i | |
149 ≈⟨⟩ | |
612 | 150 TMap t i x |
151 ∎ )) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
152 limit-uniqueness0 : {a : Obj Sets} {t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)} {f : Hom Sets a (FObj (Yoneda A b) (a0 lim))} → |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
153 ({i : Obj I} → Sets [ Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o f ] ≈ TMap t i ]) → |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
154 Sets [ ψ a t ≈ f ] |
693 | 155 limit-uniqueness0 {a} {t} {f} t0f=t = let open ≈-Reasoning A in extensionality A ( λ x → ≡←≈ A ( begin |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
156 ψ a t x |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
157 ≈⟨⟩ |
616 | 158 FMap (Yoneda A b) (limit (isLimit lim) b (ta a x t )) (id1 A b ) |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
159 ≈⟨⟩ |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
160 limit (isLimit lim) b (ta a x t ) o id1 A b |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
161 ≈⟨ idR ⟩ |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
162 limit (isLimit lim) b (ta a x t ) |
693 | 163 ≈⟨ limit-uniqueness (isLimit lim) ( λ {i} → ≈←≡ ( cong ( λ g → g x )( t0f=t {i} ))) ⟩ |
614
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
164 f x |
e6be03d94284
Representational Functor preserve limit done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
613
diff
changeset
|
165 ∎ )) |
610 | 166 |
609 | 167 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
168 YonedaFpreserveLimit : {c₁ c₂ ℓ : Level} (I : Category c₁ c₂ ℓ) (A : Category c₁ c₂ ℓ) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
169 (b : Obj A ) → LimitPreserve I A Sets (Yoneda A b) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
170 YonedaFpreserveLimit I A b = record { |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
171 preserve = λ Γ lim → YonedaFpreserveLimit0 A I b Γ lim |
610 | 172 } |
609 | 173 |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
174 |
608 | 175 -- K{*}↓U has preinitial full subcategory if U is representable |
609 | 176 -- if U is representable, K{*}↓U has initial Object ( so it has preinitial full subcategory ) |
608 | 177 |
617
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
178 open CommaHom |
34540494fdcf
initital obj uniquness done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
616
diff
changeset
|
179 |
627 | 180 data * {c : Level} : Set c where |
181 OneObj : * | |
182 | |
609 | 183 KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
608 | 184 (a : Obj A ) |
695 | 185 → HasInitialObject ( K A Sets * ↓ (Yoneda A a) ) ( record { obj = a ; hom = λ x → id1 A a } ) |
621 | 186 KUhasInitialObj {c₁} {c₂} {ℓ} A a = record { |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
187 initial = λ b → initial0 b |
636 | 188 ; uniqueness = λ f → unique f |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
189 } where |
621 | 190 commaCat : Category (c₂ ⊔ c₁) c₂ ℓ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
191 commaCat = K A Sets * ↓ Yoneda A a |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
192 initObj : Obj (K A Sets * ↓ Yoneda A a) |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
193 initObj = record { obj = a ; hom = λ x → id1 A a } |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
194 comm2 : (b : Obj commaCat) ( x : * ) → ( Sets [ FMap (Yoneda A a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) x ≡ hom b x |
693 | 195 comm2 b OneObj = let open ≈-Reasoning A in ≡←≈ A ( begin |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
196 ( Sets [ FMap (Yoneda A a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
197 ≈⟨⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
198 FMap (Yoneda A a) (hom b OneObj) (id1 A a) |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
199 ≈⟨⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
200 hom b OneObj o id1 A a |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
201 ≈⟨ idR ⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
202 hom b OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
203 ∎ ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
204 comm1 : (b : Obj commaCat) → Sets [ Sets [ FMap (Yoneda A a) (hom b OneObj) o hom initObj ] ≈ Sets [ hom b o FMap (K A Sets *) (hom b OneObj) ] ] |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
205 comm1 b = let open ≈-Reasoning Sets in begin |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
206 FMap (Yoneda A a) (hom b OneObj) o ( λ x → id1 A a ) |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
207 ≈⟨ extensionality A ( λ x → comm2 b x ) ⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
208 hom b |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
209 ≈⟨⟩ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
210 hom b o FMap (K A Sets *) (hom b OneObj) |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
211 ∎ |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
212 initial0 : (b : Obj commaCat) → |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
213 Hom commaCat initObj b |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
214 initial0 b = record { |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
215 arrow = hom b OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
216 ; comm = comm1 b } |
625 | 217 -- what is comm f ? |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
218 comm-f : (b : Obj (K A Sets * ↓ (Yoneda A a))) (f : Hom (K A Sets * ↓ Yoneda A a) initObj b) |
625 | 219 → Sets [ Sets [ FMap (Yoneda A a) (arrow f) o ( λ x → id1 A a ) ] |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
220 ≈ Sets [ hom b o FMap (K A Sets *) (arrow f) ] ] |
625 | 221 comm-f b f = comm f |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
222 unique : {b : Obj (K A Sets * ↓ Yoneda A a)} (f : Hom (K A Sets * ↓ Yoneda A a) initObj b) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
223 → (K A Sets * ↓ Yoneda A a) [ f ≈ initial0 b ] |
636 | 224 unique {b} f = let open ≈-Reasoning A in begin |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
225 arrow f |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
226 ≈↑⟨ idR ⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
227 arrow f o id1 A a |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
228 ≈⟨⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
229 ( Sets [ FMap (Yoneda A a) (arrow f) o id1 Sets (FObj (Yoneda A a) a) ] ) (id1 A a) |
625 | 230 ≈⟨⟩ |
231 ( Sets [ FMap (Yoneda A a) (arrow f) o ( λ x → id1 A a ) ] ) OneObj | |
693 | 232 ≈⟨ ≈←≡ ( cong (λ k → k OneObj ) (comm f )) ⟩ |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
233 ( Sets [ hom b o FMap (K A Sets *) (arrow f) ] ) OneObj |
624
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
234 ≈⟨⟩ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
235 hom b OneObj |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
236 ∎ |
9b9bc1e076f3
introduce one element set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
623
diff
changeset
|
237 |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
238 |
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
239 |
644
8e35703ef116
representability theorem done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
643
diff
changeset
|
240 -- A is complete and K{*}↓U has preinitial full subcategory and U preserve limit then U is representable |
615
a45c32ceca97
initial Object's arrow found
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
614
diff
changeset
|
241 |
638 | 242 -- if U preserve limit, K{*}↓U has initial object from freyd.agda |
243 | |
626 | 244 ≡-cong = Relation.Binary.PropositionalEquality.cong |
245 | |
638 | 246 |
247 ub : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
248 → Hom Sets (FObj (K A Sets *) b) (FObj U b) |
638 | 249 ub A U b x OneObj = x |
250 ob : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
251 → Obj ( K A Sets * ↓ U) |
638 | 252 ob A U b x = record { obj = b ; hom = ub A U b x} |
253 fArrow : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) {a b : Obj A} (f : Hom A a b) (x : FObj U a ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
254 → Hom ( K A Sets * ↓ U) ( ob A U a x ) (ob A U b (FMap U f x) ) |
638 | 255 fArrow A U {a} {b} f x = record { arrow = f ; comm = fArrowComm a b f x } |
256 where | |
257 fArrowComm1 : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → (y : * ) → FMap U f ( ub A U a x y ) ≡ ub A U b (FMap U f x) y | |
258 fArrowComm1 a b f x OneObj = refl | |
259 fArrowComm : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
260 Sets [ Sets [ FMap U f o hom (ob A U a x) ] ≈ Sets [ hom (ob A U b (FMap U f x)) o FMap (K A Sets *) f ] ] |
638 | 261 fArrowComm a b f x = extensionality Sets ( λ y → begin |
262 ( Sets [ FMap U f o hom (ob A U a x) ] ) y | |
263 ≡⟨⟩ | |
264 FMap U f ( hom (ob A U a x) y ) | |
265 ≡⟨⟩ | |
266 FMap U f ( ub A U a x y ) | |
267 ≡⟨ fArrowComm1 a b f x y ⟩ | |
268 ub A U b (FMap U f x) y | |
269 ≡⟨⟩ | |
270 hom (ob A U b (FMap U f x)) y | |
271 ∎ ) where | |
272 open import Relation.Binary.PropositionalEquality | |
273 open ≡-Reasoning | |
274 | |
635
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
275 |
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
276 -- if K{*}↓U has initial Obj, U is representable |
f7cc0ec00e05
introduce U preserving
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
634
diff
changeset
|
277 |
636 | 278 UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
626 | 279 (U : Functor A (Sets {c₂}) ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
280 ( i : Obj ( K A Sets * ↓ U) ) |
695 | 281 (In : HasInitialObject ( K A Sets * ↓ U) i ) |
636 | 282 → Representable A U (obj i) |
283 UisRepresentable A U i In = record { | |
627 | 284 repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } } |
626 | 285 ; repr← = record { TMap = tmap2 ; isNTrans = record { commute = comm2 } } |
638 | 286 ; reprId→ = iso→ |
287 ; reprId← = iso← | |
626 | 288 } where |
638 | 289 comm11 : (a b : Obj A) (f : Hom A a b) (y : FObj U a ) → |
290 ( Sets [ FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In (ob A U a x))) ] ) y | |
291 ≡ (Sets [ ( λ x → arrow (initial In (ob A U b x))) o FMap U f ] ) y | |
292 comm11 a b f y = begin | |
293 ( Sets [ FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In (ob A U a x))) ] ) y | |
631 | 294 ≡⟨⟩ |
638 | 295 A [ f o arrow (initial In (ob A U a y)) ] |
631 | 296 ≡⟨⟩ |
638 | 297 A [ arrow ( fArrow A U f y ) o arrow (initial In (ob A U a y)) ] |
693 | 298 ≡⟨ ≡←≈ A ( uniqueness In {ob A U b (FMap U f y) } (( K A Sets * ↓ U) [ fArrow A U f y o initial In (ob A U a y)] ) ) ⟩ |
638 | 299 arrow (initial In (ob A U b (FMap U f y) )) |
629 | 300 ≡⟨⟩ |
638 | 301 (Sets [ ( λ x → arrow (initial In (ob A U b x))) o FMap U f ] ) y |
629 | 302 ∎ where |
303 open import Relation.Binary.PropositionalEquality | |
304 open ≡-Reasoning | |
636 | 305 tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (obj i)) b) |
638 | 306 tmap1 b x = arrow ( initial In (ob A U b x ) ) |
636 | 307 comm1 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap (Yoneda A (obj i)) f o tmap1 a ] ≈ Sets [ tmap1 b o FMap U f ] ] |
626 | 308 comm1 {a} {b} {f} = let open ≈-Reasoning Sets in begin |
636 | 309 FMap (Yoneda A (obj i)) f o tmap1 a |
629 | 310 ≈⟨⟩ |
638 | 311 FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In ( ob A U a x ))) |
629 | 312 ≈⟨ extensionality Sets ( λ y → comm11 a b f y ) ⟩ |
638 | 313 ( λ x → arrow (initial In (ob A U b x))) o FMap U f |
629 | 314 ≈⟨⟩ |
626 | 315 tmap1 b o FMap U f |
316 ∎ | |
636 | 317 comm21 : (a b : Obj A) (f : Hom A a b) ( y : Hom A (obj i) a ) → |
318 (Sets [ FMap U f o (λ x → FMap U x (hom i OneObj))] ) y ≡ | |
319 (Sets [ ( λ x → (FMap U x ) (hom i OneObj)) o (λ x → A [ f o x ] ) ] ) y | |
626 | 320 comm21 a b f y = begin |
636 | 321 FMap U f ( FMap U y (hom i OneObj)) |
322 ≡⟨ ≡-cong ( λ k → k (hom i OneObj)) ( sym ( IsFunctor.distr (isFunctor U ) ) ) ⟩ | |
323 (FMap U (A [ f o y ] ) ) (hom i OneObj) | |
626 | 324 ∎ where |
325 open import Relation.Binary.PropositionalEquality | |
326 open ≡-Reasoning | |
636 | 327 tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (obj i)) b) (FObj U b) |
328 tmap2 b x = ( FMap U x ) ( hom i OneObj ) | |
626 | 329 comm2 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap U f o tmap2 a ] ≈ |
636 | 330 Sets [ tmap2 b o FMap (Yoneda A (obj i)) f ] ] |
626 | 331 comm2 {a} {b} {f} = let open ≈-Reasoning Sets in begin |
332 FMap U f o tmap2 a | |
333 ≈⟨⟩ | |
636 | 334 FMap U f o ( λ x → ( FMap U x ) ( hom i OneObj ) ) |
626 | 335 ≈⟨ extensionality Sets ( λ y → comm21 a b f y ) ⟩ |
636 | 336 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o ( λ x → A [ f o x ] ) |
337 ≈⟨⟩ | |
338 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o FMap (Yoneda A (obj i)) f | |
339 ≈⟨⟩ | |
340 tmap2 b o FMap (Yoneda A (obj i)) f | |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
341 ∎ |
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
342 iso0 : ( x : Obj A) ( y : Hom A (obj i ) x ) ( z : * ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
343 → ( Sets [ FMap U y o hom i ] ) z ≡ ( Sets [ ub A U x (FMap U y (hom i OneObj)) o FMap (K A Sets *) y ] ) z |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
344 iso0 x y OneObj = refl |
636 | 345 iso→ : {x : Obj A} → Sets [ Sets [ tmap1 x o tmap2 x ] ≈ id1 Sets (FObj (Yoneda A (obj i)) x) ] |
693 | 346 iso→ {x} = let open ≈-Reasoning A in extensionality Sets ( λ ( y : Hom A (obj i ) x ) → ≡←≈ A ( begin |
636 | 347 ( Sets [ tmap1 x o tmap2 x ] ) y |
626 | 348 ≈⟨⟩ |
638 | 349 arrow ( initial In (ob A U x (( FMap U y ) ( hom i OneObj ) ))) |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
350 ≈↑⟨ uniqueness In (record { arrow = y ; comm = extensionality Sets ( λ (z : * ) → iso0 x y z ) } ) ⟩ |
636 | 351 y |
352 ∎ )) | |
353 iso← : {x : Obj A} → Sets [ Sets [ tmap2 x o tmap1 x ] ≈ id1 Sets (FObj U x) ] | |
354 iso← {x} = extensionality Sets ( λ (y : FObj U x ) → ( begin | |
355 ( Sets [ tmap2 x o tmap1 x ] ) y | |
356 ≡⟨⟩ | |
638 | 357 ( FMap U ( arrow ( initial In (ob A U x y ) )) ) ( hom i OneObj ) |
358 ≡⟨ ≡-cong (λ k → k OneObj) ( comm ( initial In (ob A U x y ) )) ⟩ | |
359 hom (ob A U x y) OneObj | |
637
946ea019a2e7
if K{*}↓U has initial Obj, U is representable done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
636
diff
changeset
|
360 ≡⟨⟩ |
636 | 361 y |
362 ∎ ) ) where | |
363 open import Relation.Binary.PropositionalEquality | |
364 open ≡-Reasoning | |
645 | 365 |
647 | 366 ------------- |
367 -- Adjoint Functor Theorem | |
368 -- | |
369 | |
648 | 370 module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) |
371 (U : Functor A B ) | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
372 (i : (b : Obj B) → Obj ( K A B b ↓ U) ) |
695 | 373 (In : (b : Obj B) → HasInitialObject ( K A B b ↓ U) (i b) ) |
663
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
662
diff
changeset
|
374 where |
648 | 375 |
649 | 376 tmap-η : (y : Obj B) → Hom B y (FObj U (obj (i y))) |
377 tmap-η y = hom (i y) | |
648 | 378 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
379 sobj : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaObj (K A B a) U |
652 | 380 sobj {a} {b} f = record {obj = b; hom = f } |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
381 solution : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaHom (K A B a) U (i a) (sobj f) |
652 | 382 solution {a} {b} f = initial (In a) (sobj f) |
647 | 383 |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
384 ηf : (a b : Obj B) → ( f : Hom B a b ) → Obj ( K A B a ↓ U) |
654 | 385 ηf a b f = sobj ( B [ tmap-η b o f ] ) |
386 | |
653 | 387 univ : {a : Obj B} {b : Obj A} → (f : Hom B a (FObj U b)) |
652 | 388 → B [ B [ FMap U (arrow (solution f)) o tmap-η a ] ≈ f ] |
653 | 389 univ {a} {b} f = let open ≈-Reasoning B in begin |
390 FMap U (arrow (solution f)) o tmap-η a | |
391 ≈⟨ comm (initial (In a) (sobj f)) ⟩ | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
392 hom (sobj f) o FMap (K A B a) (arrow (initial (In a) (sobj f))) |
653 | 393 ≈⟨ idR ⟩ |
394 f | |
395 ∎ | |
652 | 396 |
654 | 397 unique : {a : Obj B} { b : Obj A } → { f : Hom B a (FObj U b) } → { g : Hom A (obj (i a)) b} → |
398 B [ B [ FMap U g o tmap-η a ] ≈ f ] → A [ arrow (solution f) ≈ g ] | |
399 unique {a} {b} {f} {g} ugη=f = let open ≈-Reasoning A in begin | |
400 arrow (solution f) | |
693 | 401 ≈↑⟨ ≈←≡ ( cong (λ k → arrow (solution k)) ( ≡←≈ B ugη=f )) ⟩ |
654 | 402 arrow (solution (B [ FMap U g o tmap-η a ] )) |
403 ≈↑⟨ uniqueness (In a) (record { arrow = g ; comm = comm1 }) ⟩ | |
404 g | |
405 ∎ where | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
690
diff
changeset
|
406 comm1 : B [ B [ FMap U g o hom (i a) ] ≈ B [ B [ FMap U g o tmap-η a ] o FMap (K A B a) g ] ] |
654 | 407 comm1 = let open ≈-Reasoning B in sym idR |
645 | 408 |
690
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
409 UM : UniversalMapping B A U |
655 | 410 UM = record { |
690
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
411 F = λ b → obj (i b) ; |
3d41a8edbf63
fix universal mapping done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
689
diff
changeset
|
412 η = tmap-η ; |
655 | 413 _* = λ f → arrow (solution f) ; |
414 isUniversalMapping = record { | |
415 universalMapping = λ {a} {b} {f} → univ f ; | |
416 uniquness = unique | |
417 }} | |
418 | |
659 | 419 -- Adjoint can be built as follows (same as univeral-mapping.agda ) |
420 -- | |
421 -- F : Functor B A | |
422 -- F = record { | |
423 -- FObj = λ b → obj (i b) | |
424 -- ; FMap = λ {x} {y} (f : Hom B x y ) → arrow (solution ( B [ tmap-η y o f ] )) | |
645 | 425 |
659 | 426 -- nat-ε : NTrans A A (F ○ U) identityFunctor |
427 -- nat-ε = record { | |
428 -- TMap = λ x → arrow ( solution (id1 B (FObj U x))) | |
645 | 429 |
659 | 430 -- nat-η : NTrans B B identityFunctor (U ○ F) |
431 -- nat-η = record { TMap = λ y → tmap-η y ; isNTrans = record { commute = comm1 } } where | |
645 | 432 |
659 | 433 -- FisLeftAdjoint : Adjunction B A U F nat-η nat-ε |
434 -- FisLeftAdjoint = record { isAdjunction = record { | |
435 | |
436 -- end | |
437 |