changeset 637:946ea019a2e7

if K{*}↓U has initial Obj, U is representable done.
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 01 Jul 2017 00:12:38 +0900
parents 3e663c7f88c4
children a07b95e92933
files freyd2.agda
diffstat 1 files changed, 8 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
--- a/freyd2.agda	Fri Jun 30 23:36:54 2017 +0900
+++ b/freyd2.agda	Sat Jul 01 00:12:38 2017 +0900
@@ -344,17 +344,16 @@
                 ( λ x → ( FMap U x ) ( hom i OneObj ) ) o FMap (Yoneda A (obj i)) f 
              ≈⟨⟩
                 tmap2 b o FMap (Yoneda A (obj i)) f 
-             ∎ 
+             ∎
+      iso0 : ( x : Obj A) ( y : Hom A (obj i ) x ) ( z : * )
+         → ( Sets [ FMap U y o hom i ] ) z ≡ ( Sets [ ub x (FMap U y (hom i OneObj)) o FMap (K Sets A *) y ] ) z 
+      iso0 x y  OneObj = refl
       iso→  : {x : Obj A} → Sets [ Sets [ tmap1 x o tmap2 x ] ≈ id1 Sets (FObj (Yoneda A (obj i)) x) ]
       iso→ {x} = let open ≈-Reasoning A in extensionality Sets ( λ ( y : Hom A (obj i ) x ) → ≈-≡ A ( begin
                ( Sets [ tmap1 x o tmap2 x ] ) y
              ≈⟨⟩
                 arrow ( initial In (ob x (( FMap U y ) ( hom i OneObj ) ))) 
-             ≈↑⟨  uniqueness In {!!} ⟩
-               arrow (fArrow y {!!} )
-             ≈⟨ {!!} ⟩
-               arrow (fArrow y (hom i OneObj) )
-             ≈⟨⟩
+             ≈↑⟨  uniqueness In (record { arrow = y ; comm = extensionality Sets ( λ (z : * ) → iso0 x y z ) }  ) ⟩
                y
              ∎  ))
       iso←  : {x : Obj A} → Sets [ Sets [ tmap2 x o tmap1 x ] ≈ id1 Sets (FObj U x) ]
@@ -362,7 +361,9 @@
                ( Sets [ tmap2 x o tmap1 x ] ) y
              ≡⟨⟩
                ( FMap U ( arrow ( initial In (ob x y ) ))  ) ( hom i OneObj )
-             ≡⟨ {!!} ⟩
+             ≡⟨ ≡-cong (λ k → k OneObj) ( comm ( initial In (ob x y ) )) ⟩
+                 hom (ob x y) OneObj
+             ≡⟨⟩
                y
              ∎  ) ) where
                   open  import  Relation.Binary.PropositionalEquality