Mercurial > hg > Members > kono > Proof > category
annotate equalizer.agda @ 213:f2faee0897c7
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 Sep 2013 01:25:21 +0900 |
parents | 8b3d3f69b725 |
children | f8afdb9ed99a |
rev | line source |
---|---|
205 | 1 --- |
2 -- | |
3 -- Equalizer | |
4 -- | |
208 | 5 -- e f |
205 | 6 -- c --------> a ----------> b |
208 | 7 -- ^ . ----------> |
205 | 8 -- | . g |
208 | 9 -- |k . |
10 -- | . h | |
205 | 11 -- d |
12 -- | |
13 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
14 ---- | |
15 | |
16 open import Category -- https://github.com/konn/category-agda | |
17 open import Level | |
18 module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where | |
19 | |
20 open import HomReasoning | |
21 open import cat-utility | |
22 | |
209 | 23 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
205 | 24 field |
209 | 25 e : Hom A c a |
26 ef=eg : A [ A [ f o e ] ≈ A [ g o e ] ] | |
27 k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c | |
28 ke=h : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → A [ A [ e o k {d} h eq ] ≈ h ] | |
29 uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → {k' : Hom A d c } → A [ A [ e o k' ] ≈ h ] → | |
30 A [ k {d} h eq ≈ k' ] | |
31 equalizer : Hom A c a | |
32 equalizer = e | |
206 | 33 |
209 | 34 record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
206 | 35 field |
212 | 36 α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A c a |
37 γ : {a b d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c d | |
38 δ : {a b c : Obj A } → (f : Hom A a b) → Hom A a c | |
213 | 39 b1 : A [ A [ f o α {a} {b} {a} f g ] ≈ A [ g o α f g ] ] |
212 | 40 b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] |
213 | 41 b3 : A [ A [ α f f o δ {a} {b} {a} f ] ≈ id1 A a ] |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
42 -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] |
213 | 43 b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ {!!} ] |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
44 -- A [ α f g o β f g h ] ≈ h |
212 | 45 -- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A a d |
46 -- β {d} {e} {a} {b} f g h = A [ γ {a} {b} {d} f g h o δ (A [ f o h ]) ] | |
207
22811f7a04e1
Equalizer problems have written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
206
diff
changeset
|
47 |
209 | 48 open Equalizer |
49 open EqEqualizer | |
50 | |
211 | 51 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b) → |
52 ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g | |
209 | 53 lemma-equ1 A {a} {b} {c} f g eqa = record { |
211 | 54 α = λ f g → e (eqa f g ) ; -- Hom A c a |
212 | 55 γ = λ {a} {b} {d} f g h → ( k (eqa f g ) ( A [ h o (e ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {d} f g h ) ) ; -- Hom A c d |
213 | 56 δ = λ {a} f → k (eqa f f) (id1 A a) (lemma-equ2 f); -- Hom A a c |
211 | 57 b1 = ef=eg (eqa f g) ; |
212 | 58 b2 = lemma-equ5 ; |
59 b3 = lemma-equ3 ; | |
60 b4 = {!!} | |
211 | 61 } where |
62 lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] | |
63 lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom | |
213 | 64 lemma-equ3 : A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] |
65 lemma-equ3 = let open ≈-Reasoning (A) in | |
211 | 66 begin |
67 e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) | |
68 ≈⟨ ke=h (eqa f f ) (lemma-equ2 f) ⟩ | |
69 id1 A a | |
70 ∎ | |
212 | 71 lemma-equ4 : {a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → |
72 A [ A [ f o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ] | |
73 lemma-equ4 {a} {b} {d} f g h = let open ≈-Reasoning (A) in | |
74 begin | |
75 f o ( h o e (eqa (f o h) ( g o h ))) | |
76 ≈⟨ assoc ⟩ | |
77 (f o h) o e (eqa (f o h) ( g o h )) | |
78 ≈⟨ ef=eg (eqa (A [ f o h ]) (A [ g o h ])) ⟩ | |
79 (g o h) o e (eqa (f o h) ( g o h )) | |
80 ≈↑⟨ assoc ⟩ | |
81 g o ( h o e (eqa (f o h) ( g o h ))) | |
82 ∎ | |
83 lemma-equ5 : {d : Obj A} {h : Hom A d a} → A [ | |
84 A [ e (eqa f g) o k (eqa f g) (A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 f g h) ] | |
85 ≈ A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] | |
86 lemma-equ5 {d} {h} = let open ≈-Reasoning (A) in | |
87 begin | |
88 e (eqa f g) o k (eqa f g) (h o e (eqa (f o h) (g o h))) (lemma-equ4 f g h) | |
89 ≈⟨ ke=h (eqa f g) (lemma-equ4 f g h) ⟩ | |
90 h o e (eqa (f o h ) ( g o h )) | |
91 ∎ | |
211 | 92 |
93 | |
212 | 94 |
95 | |
96 |