Mercurial > hg > Members > kono > Proof > category
comparison yoneda.agda @ 191:45191dc3f78a
nat continue...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Aug 2013 15:28:57 +0900 |
parents | b82d7b054f28 |
children | d7e4b7b441be |
comparison
equal
deleted
inserted
replaced
190:b82d7b054f28 | 191:45191dc3f78a |
---|---|
190 ≈⟨ idL ⟩ | 190 ≈⟨ idL ⟩ |
191 g | 191 g |
192 ∎ | 192 ∎ |
193 ) ) ) | 193 ) ) ) |
194 distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-nat (A [ g o f ]) ≈ SetsAop [ y-nat g o y-nat f ] ] | 194 distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-nat (A [ g o f ]) ≈ SetsAop [ y-nat g o y-nat f ] ] |
195 distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] ) | 195 distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]))) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] ) |
196 extensionality1 ( λ x → extensionality ( | 196 extensionality1 ( λ x → extensionality ( |
197 λ h → ≈-≡ ( begin | 197 λ h → ≈-≡ ( begin |
198 A [ A [ g o f ] o h ] | 198 A [ A [ g o f ] o h ] |
199 ≈↑⟨ assoc ⟩ | 199 ≈↑⟨ assoc ⟩ |
200 A [ g o A [ f o h ] ] | 200 A [ g o A [ f o h ] ] |
205 ------ | 205 ------ |
206 -- | 206 -- |
207 -- F : A → Sets ∈ Obj SetsAop | 207 -- F : A → Sets ∈ Obj SetsAop |
208 -- | 208 -- |
209 -- F(a) ⇔ Nat(h_a,F) | 209 -- F(a) ⇔ Nat(h_a,F) |
210 -- | 210 -- x ∈ F(a) , (g : Hom A b a) → ( FMap F g ) x |
211 ------ | 211 ------ |
212 | 212 |
213 F2Natmap : {a : Obj A} → {F : Obj SetsAop} → (x : Obj (Category.op A)) → Hom Sets (FObj (CF {a}) x) (FObj F x) | 213 F2Natmap : {a : Obj A} → {F : Obj SetsAop} → {x : FObj F a} → (b : Obj (Category.op A)) → Hom Sets (FObj (CF {a}) b) (FObj F b) |
214 F2Natmap = {!!} | 214 F2Natmap {a} {F} {x} b = λ ( g : Hom A b a ) → ( FMap F g ) x |
215 | 215 |
216 F2Nat : {a : Obj A} → {F : Obj SetsAop} → FObj F a → Hom SetsAop (CF {a}) F | 216 F2Nat : {a : Obj A} → {F : Obj SetsAop} → FObj F a → Hom SetsAop (CF {a}) F |
217 F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} ; isNTrans = isNTrans1 {a} } where | 217 F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} {x} ; isNTrans = isNTrans1 } where |
218 isNTrans1 : {a : Obj A } → IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) F (F2Natmap {a} {F}) | 218 commute : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} → |
219 isNTrans1 {a} = record { commute = {!!} } | 219 Sets [ Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] ≈ Sets [ F2Natmap {a} {F} {x} b o FMap CF f ] ] |
220 commute {a₁} {b} {f} = extensionality ( λ (g : Hom A a₁ a ) → ? ) | |
221 isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) F (F2Natmap {a} {F}) | |
222 isNTrans1 = record { commute = λ {a₁ b f} → commute {a₁} {b} {f} } | |
220 | 223 |
221 | 224 |
222 Nat2F : {a : Obj A} → {F : Obj SetsAop} → Hom SetsAop (CF {a}) F → FObj F a | 225 Nat2F : {a : Obj A} → {F : Obj SetsAop} → Hom SetsAop (CF {a}) F → FObj F a |
223 Nat2F = {!!} | 226 Nat2F = {!!} |
224 | 227 |