Mercurial > hg > Members > kono > Proof > category
diff yoneda.agda @ 191:45191dc3f78a
nat continue...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Aug 2013 15:28:57 +0900 |
parents | b82d7b054f28 |
children | d7e4b7b441be |
line wrap: on
line diff
--- a/yoneda.agda Thu Aug 29 16:07:45 2013 +0900 +++ b/yoneda.agda Fri Aug 30 15:28:57 2013 +0900 @@ -192,7 +192,7 @@ ∎ ) ) ) distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → SetsAop [ y-nat (A [ g o f ]) ≈ SetsAop [ y-nat g o y-nat f ] ] - distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] ) + distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in -- (λ x g₁ → (A [ (A [ g o f] o g₁ ]))) ≡ (λ x x₁ → A [ g o A [ f o x₁ ] ] ) extensionality1 ( λ x → extensionality ( λ h → ≈-≡ ( begin A [ A [ g o f ] o h ] @@ -207,16 +207,19 @@ -- F : A → Sets ∈ Obj SetsAop -- -- F(a) ⇔ Nat(h_a,F) --- +-- x ∈ F(a) , (g : Hom A b a) → ( FMap F g ) x ------ -F2Natmap : {a : Obj A} → {F : Obj SetsAop} → (x : Obj (Category.op A)) → Hom Sets (FObj (CF {a}) x) (FObj F x) -F2Natmap = {!!} +F2Natmap : {a : Obj A} → {F : Obj SetsAop} → {x : FObj F a} → (b : Obj (Category.op A)) → Hom Sets (FObj (CF {a}) b) (FObj F b) +F2Natmap {a} {F} {x} b = λ ( g : Hom A b a ) → ( FMap F g ) x F2Nat : {a : Obj A} → {F : Obj SetsAop} → FObj F a → Hom SetsAop (CF {a}) F -F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} ; isNTrans = isNTrans1 {a} } where - isNTrans1 : {a : Obj A } → IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) F (F2Natmap {a} {F}) - isNTrans1 {a} = record { commute = {!!} } +F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} {x} ; isNTrans = isNTrans1 } where + commute : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} → + Sets [ Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] ≈ Sets [ F2Natmap {a} {F} {x} b o FMap CF f ] ] + commute {a₁} {b} {f} = extensionality ( λ (g : Hom A a₁ a ) → ? ) + isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) F (F2Natmap {a} {F}) + isNTrans1 = record { commute = λ {a₁ b f} → commute {a₁} {b} {f} } Nat2F : {a : Obj A} → {F : Obj SetsAop} → Hom SetsAop (CF {a}) F → FObj F a