Mercurial > hg > Members > kono > Proof > category
comparison equalizer.agda @ 210:51c57efe89b9
α b1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 22:21:51 +0900 |
parents | 4e138cc953f3 |
children | 8c738327df19 |
comparison
equal
deleted
inserted
replaced
209:4e138cc953f3 | 210:51c57efe89b9 |
---|---|
32 equalizer : Hom A c a | 32 equalizer : Hom A c a |
33 equalizer = e | 33 equalizer = e |
34 | 34 |
35 record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | 35 record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
36 field | 36 field |
37 α : {e a : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a | 37 α : (f : Hom A a b) → (g : Hom A a b ) → Hom A c a |
38 γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e | 38 -- γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e |
39 δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c | 39 -- δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c |
40 b1 : {e : Obj A } → A [ A [ f o α {e} {a} f g ] ≈ A [ g o α {e} {a} f g ] ] | 40 b1 : {e : Obj A } → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] |
41 b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] | 41 -- b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] |
42 b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] | 42 -- b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] |
43 -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] | 43 -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] |
44 b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] | 44 -- b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] |
45 -- A [ α f g o β f g h ] ≈ h | 45 -- A [ α f g o β f g h ] ≈ h |
46 β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e | 46 -- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e |
47 β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] | 47 -- β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] |
48 | 48 |
49 open Equalizer | 49 open Equalizer |
50 open EqEqualizer | 50 open EqEqualizer |
51 | 51 |
52 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g | 52 lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g |
53 lemma-equ1 A {a} {b} {c} f g eqa = record { | 53 lemma-equ1 A {a} {b} {c} f g eqa = record { |
54 α = λ {e'} {a} f g → ? ; -- e' -> c c -> a, Hom A e' a | 54 α = λ f g → e eqa ; -- Hom A c a |
55 γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e | 55 -- γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e |
56 δ = λ {a} {b} f → {!!} ; -- Hom A a c | 56 -- δ = λ {a} {b} f → {!!} ; -- Hom A a c |
57 b1 = {!!} ; | 57 b1 = ef=eg eqa -- ; |
58 b2 = {!!} ; | 58 -- b2 = {!!} ; |
59 b3 = {!!} ; | 59 -- b3 = {!!} ; |
60 b4 = {!!} | 60 -- b4 = {!!} |
61 } | 61 } |