Mercurial > hg > Members > kono > Proof > category
comparison src/CCCSets.agda @ 1031:52c98490c877
Sets Topos iso1 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Mar 2021 20:22:20 +0900 |
parents | 76a7d5a8a4e0 |
children | c3b3faa791fa |
comparison
equal
deleted
inserted
replaced
1030:76a7d5a8a4e0 | 1031:52c98490c877 |
---|---|
158 ; isEqualizer = SetsIsEqualizer _ _ _ _ } | 158 ; isEqualizer = SetsIsEqualizer _ _ _ _ } |
159 tchar : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) → a → Bool {c} | 159 tchar : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) → a → Bool {c} |
160 tchar {a} {b} m mono y with lem (image m y ) | 160 tchar {a} {b} m mono y with lem (image m y ) |
161 ... | case1 t = true | 161 ... | case1 t = true |
162 ... | case2 f = false | 162 ... | case2 f = false |
163 | 163 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
164 img-cong : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → (y y' : a) → y ≡ y' → (s : image m y ) (t : image m y') → s ≅ t | |
165 img-cong {a} {b} m mono .(m x) .(m x₁) eq (isImage x) (isImage x₁) | |
166 with cong (λ k → k ! ) ( Mono.isMono mono {One} (λ _ → x) (λ _ → x₁ ) ( extensionality Sets ( λ _ → eq )) ) | |
167 ... | refl = HE.refl | |
164 image-iso : {a b : Obj (Sets {c})} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → (i0 i1 : image m y ) → i0 ≡ i1 | 168 image-iso : {a b : Obj (Sets {c})} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → (i0 i1 : image m y ) → i0 ≡ i1 |
165 image-iso = {!!} | 169 image-iso {a} {b} m mono y i0 i1 = HE.≅-to-≡ (img-cong m mono y y refl i0 i1) |
166 tchar¬Img : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → tchar m mono y ≡ false → ¬ image m y | 170 tchar¬Img : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → tchar m mono y ≡ false → ¬ image m y |
167 tchar¬Img m mono y eq im with lem (image m y) | 171 tchar¬Img m mono y eq im with lem (image m y) |
168 ... | case2 n = n im | 172 ... | case2 n = n im |
169 b2i : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (x : b) → image m (m x) | 173 b2i : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (x : b) → image m (m x) |
170 b2i m x = isImage x | 174 b2i m x = isImage x |