Mercurial > hg > Members > kono > Proof > category
diff src/CCCSets.agda @ 1031:52c98490c877
Sets Topos iso1 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Mar 2021 20:22:20 +0900 |
parents | 76a7d5a8a4e0 |
children | c3b3faa791fa |
line wrap: on
line diff
--- a/src/CCCSets.agda Tue Mar 30 17:58:55 2021 +0900 +++ b/src/CCCSets.agda Tue Mar 30 20:22:20 2021 +0900 @@ -160,9 +160,13 @@ tchar {a} {b} m mono y with lem (image m y ) ... | case1 t = true ... | case2 f = false - + open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + img-cong : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → (y y' : a) → y ≡ y' → (s : image m y ) (t : image m y') → s ≅ t + img-cong {a} {b} m mono .(m x) .(m x₁) eq (isImage x) (isImage x₁) + with cong (λ k → k ! ) ( Mono.isMono mono {One} (λ _ → x) (λ _ → x₁ ) ( extensionality Sets ( λ _ → eq )) ) + ... | refl = HE.refl image-iso : {a b : Obj (Sets {c})} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → (i0 i1 : image m y ) → i0 ≡ i1 - image-iso = {!!} + image-iso {a} {b} m mono y i0 i1 = HE.≅-to-≡ (img-cong m mono y y refl i0 i1) tchar¬Img : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) (y : a) → tchar m mono y ≡ false → ¬ image m y tchar¬Img m mono y eq im with lem (image m y) ... | case2 n = n im