Mercurial > hg > Members > kono > Proof > category
comparison HomReasoning.agda @ 67:e75436075bf0
cong-hom ?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Jul 2013 13:08:49 +0900 |
parents | 51f653bd9656 |
children | 84a150c980ce |
comparison
equal
deleted
inserted
replaced
66:51f653bd9656 | 67:e75436075bf0 |
---|---|
71 idR = IsCategory.identityR (Category.isCategory A) | 71 idR = IsCategory.identityR (Category.isCategory A) |
72 | 72 |
73 sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f | 73 sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f |
74 sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) | 74 sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) |
75 | 75 |
76 -- How to prove this? | |
77 -- cong-≈ : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } → | |
78 -- B [ a ≈ b ] → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b | |
79 -- cong-≈ refl f = refl-hom | |
80 | |
76 assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} | 81 assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} |
77 → f o ( g o h ) ≈ ( f o g ) o h | 82 → f o ( g o h ) ≈ ( f o g ) o h |
78 assoc = IsCategory.associative (Category.isCategory A) | 83 assoc = IsCategory.associative (Category.isCategory A) |
79 | 84 |
80 distr : { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} (T : Functor D A) → {a b c : Obj D} {g : Hom D b c} { f : Hom D a b } | 85 distr : { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} (T : Functor D A) → {a b c : Obj D} {g : Hom D b c} { f : Hom D a b } |