Mercurial > hg > Members > kono > Proof > category
diff HomReasoning.agda @ 67:e75436075bf0
cong-hom ?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Jul 2013 13:08:49 +0900 (2013-07-25) |
parents | 51f653bd9656 |
children | 84a150c980ce |
line wrap: on
line diff
--- a/HomReasoning.agda Thu Jul 25 12:58:21 2013 +0900 +++ b/HomReasoning.agda Thu Jul 25 13:08:49 2013 +0900 @@ -73,6 +73,11 @@ sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) +-- How to prove this? +-- cong-≈ : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } → +-- B [ a ≈ b ] → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b +-- cong-≈ refl f = refl-hom + assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} → f o ( g o h ) ≈ ( f o g ) o h assoc = IsCategory.associative (Category.isCategory A)