Mercurial > hg > Members > kono > Proof > category
comparison freyd.agda @ 436:ef37decef1ca
initialFullSubCategory
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Aug 2016 17:02:03 +0900 |
parents | 9f014f34b988 |
children | 9be298a02c35 |
comparison
equal
deleted
inserted
replaced
435:9f014f34b988 | 436:ef37decef1ca |
---|---|
14 record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) | 14 record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
15 (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) | 15 (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) |
16 : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where | 16 : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
17 field | 17 field |
18 ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj F a) (FObj F b) } → | 18 ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj F a) (FObj F b) } → |
19 (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- co-comain of FMap is local small | 19 (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- codomain of FMap is local small |
20 full→ : { a b : Obj A } { x : Hom A (FObj F a) (FObj F b) } → A [ FMap F ( FMap← x ) ≈ x ] | 20 full→ : { a b : Obj A } { x : Hom A (FObj F a) (FObj F b) } → A [ FMap F ( FMap← x ) ≈ x ] |
21 full← : { a b : Obj A } { x : Hom A a b } → A [ FMap← ( FMap F x ) ≈ x ] | |
22 | 21 |
23 -- pre-initial | 22 -- pre-initial |
24 | 23 |
25 record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) | 24 record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
26 (F : Functor A A ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where | 25 (F : Functor A A ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where |
45 initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) | 44 initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
46 (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) | 45 (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) |
47 (lim : ( Γ : Functor A A ) → { a0 : Obj A } { u : NTrans A A ( K A A a0 ) Γ } → Limit A A Γ a0 u ) -- completeness | 46 (lim : ( Γ : Functor A A ) → { a0 : Obj A } { u : NTrans A A ( K A A a0 ) Γ } → Limit A A Γ a0 u ) -- completeness |
48 ( equ : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) | 47 ( equ : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) |
49 (SFS : SmallFullSubcategory A F FMap← ) → | 48 (SFS : SmallFullSubcategory A F FMap← ) → |
50 (PI : PreInitial A F ) → { a0 : Obj A } → { u : (a : Obj A) → NTrans A A (K A A a) F } | 49 (PI : PreInitial A F ) → { a0 : Obj A } → |
50 { u : (a : Obj A) → NTrans A A (K A A a) F } -- Does it exist? | |
51 → HasInitialObject A a0 | 51 → HasInitialObject A a0 |
52 initialFromPreInitialFullSubcategory A F FMap← lim equ SFS PI {a0} {u} = record { | 52 initialFromPreInitialFullSubcategory A F FMap← lim equ SFS PI {a0} {u} = record { |
53 initial = initialArrow ; | 53 initial = initialArrow ; |
54 uniqueness = λ a f → lemma1 a f | 54 uniqueness = λ a f → lemma1 a f |
55 } where | 55 } where |
56 initialArrow : ∀( a : Obj A ) → Hom A a0 a | 56 initialArrow : ∀( a : Obj A ) → Hom A a0 a |
57 initialArrow a = A [ preinitialArrow PI {a} o limit (lim F {FObj F (preinitialObj PI)} {u (FObj F (preinitialObj PI))} ) a0 (u a0 ) ] | 57 initialArrow a = A [ preinitialArrow PI {a} o limit (lim F {FObj F (preinitialObj PI)} {u (FObj F (preinitialObj PI))} ) a0 (u a0 ) ] |
58 lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ initialArrow a ] | 58 equ-fi : { a c : Obj A} -> { p : Hom A c a0 } -> {f : Hom A a0 a} -> Equalizer A p ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f |
59 lemma1 a f = let open ≈-Reasoning (A) in | 59 equ-fi {a} {c} {p} {f} = equ ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f |
60 sym ( | 60 open Equalizer |
61 begin | 61 kfuc=1 : {k1 c : Obj A} -> A [ A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o |
62 initialArrow a | 62 A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ≈ id1 A a0 ] |
63 ≈⟨⟩ | 63 kfuc=1 {k1} {c} = {!!} |
64 preinitialArrow PI {a} o limit (lim F) a0 (u a0) | |
65 ≈⟨ {!!} ⟩ | |
66 f | |
67 ∎ ) | |
68 -- if equalizer has right inverse, f = g | 64 -- if equalizer has right inverse, f = g |
69 lemma2 : (a b c : Obj A) ( f g : Hom A a b ) (e : Hom A c a ) (e' : Hom A a c ) ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) | 65 lemma2 : (a b c : Obj A) ( f g : Hom A a b ) (e : Hom A c a ) (e' : Hom A a c ) ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) |
70 -> A [ f ≈ g ] | 66 -> A [ f ≈ g ] |
71 lemma2 a b c f g e e' equ inv-e = let open ≈-Reasoning (A) in | 67 lemma2 a b c f g e e' equ inv-e = let open ≈-Reasoning (A) in |
72 let open Equalizer in | 68 let open Equalizer in |
85 ≈⟨ cdr inv-e ⟩ | 81 ≈⟨ cdr inv-e ⟩ |
86 g o id1 A a | 82 g o id1 A a |
87 ≈⟨ idR ⟩ | 83 ≈⟨ idR ⟩ |
88 g | 84 g |
89 ∎ | 85 ∎ |
86 lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ initialArrow a ] | |
87 lemma1 a f = let open ≈-Reasoning (A) in | |
88 sym ( | |
89 begin | |
90 initialArrow a | |
91 ≈⟨⟩ | |
92 preinitialArrow PI {a} o limit (lim F) a0 (u a0) | |
93 ≈⟨ lemma2 a0 a {!!} (A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ]) f {!!} {!!} {!!} (kfuc=1 {{!!}} {{!!}} ) ⟩ | |
94 f | |
95 ∎ ) | |
90 | 96 |