Mercurial > hg > Members > kono > Proof > category
changeset 436:ef37decef1ca
initialFullSubCategory
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Aug 2016 17:02:03 +0900 |
parents | 9f014f34b988 |
children | 9be298a02c35 |
files | freyd.agda |
diffstat | 1 files changed, 19 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Sun Aug 28 18:59:40 2016 +0900 +++ b/freyd.agda Mon Aug 29 17:02:03 2016 +0900 @@ -16,9 +16,8 @@ : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj F a) (FObj F b) } → - (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- co-comain of FMap is local small + (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- codomain of FMap is local small full→ : { a b : Obj A } { x : Hom A (FObj F a) (FObj F b) } → A [ FMap F ( FMap← x ) ≈ x ] - full← : { a b : Obj A } { x : Hom A a b } → A [ FMap← ( FMap F x ) ≈ x ] -- pre-initial @@ -47,7 +46,8 @@ (lim : ( Γ : Functor A A ) → { a0 : Obj A } { u : NTrans A A ( K A A a0 ) Γ } → Limit A A Γ a0 u ) -- completeness ( equ : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) (SFS : SmallFullSubcategory A F FMap← ) → - (PI : PreInitial A F ) → { a0 : Obj A } → { u : (a : Obj A) → NTrans A A (K A A a) F } + (PI : PreInitial A F ) → { a0 : Obj A } → + { u : (a : Obj A) → NTrans A A (K A A a) F } -- Does it exist? → HasInitialObject A a0 initialFromPreInitialFullSubcategory A F FMap← lim equ SFS PI {a0} {u} = record { initial = initialArrow ; @@ -55,16 +55,12 @@ } where initialArrow : ∀( a : Obj A ) → Hom A a0 a initialArrow a = A [ preinitialArrow PI {a} o limit (lim F {FObj F (preinitialObj PI)} {u (FObj F (preinitialObj PI))} ) a0 (u a0 ) ] - lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ initialArrow a ] - lemma1 a f = let open ≈-Reasoning (A) in - sym ( - begin - initialArrow a - ≈⟨⟩ - preinitialArrow PI {a} o limit (lim F) a0 (u a0) - ≈⟨ {!!} ⟩ - f - ∎ ) + equ-fi : { a c : Obj A} -> { p : Hom A c a0 } -> {f : Hom A a0 a} -> Equalizer A p ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f + equ-fi {a} {c} {p} {f} = equ ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f + open Equalizer + kfuc=1 : {k1 c : Obj A} -> A [ A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o + A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ≈ id1 A a0 ] + kfuc=1 {k1} {c} = {!!} -- if equalizer has right inverse, f = g lemma2 : (a b c : Obj A) ( f g : Hom A a b ) (e : Hom A c a ) (e' : Hom A a c ) ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) -> A [ f ≈ g ] @@ -87,4 +83,14 @@ ≈⟨ idR ⟩ g ∎ + lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ initialArrow a ] + lemma1 a f = let open ≈-Reasoning (A) in + sym ( + begin + initialArrow a + ≈⟨⟩ + preinitialArrow PI {a} o limit (lim F) a0 (u a0) + ≈⟨ lemma2 a0 a {!!} (A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ]) f {!!} {!!} {!!} (kfuc=1 {{!!}} {{!!}} ) ⟩ + f + ∎ )